[1] |
吴劲松, 陈衔城, 陆栋. 激光多普勒血流测定法[J]. 中国激光医学杂志, 1999, 8(3): 185-187. doi: 10.3969/j.issn.1003-9430.1999.03.017WU J S, CHEN X Ch, LU D. Laser Doppler flowmetry[J]. Chinese Journal of Laser Medicine & Surgery, 1999, 8(3): 185-187(in Chinese). doi: 10.3969/j.issn.1003-9430.1999.03.017 |
[2] |
杨小杰, 韩建群. 激光多普勒血流仪在肿瘤血管新生研究中的应用[C]//中国微循环学会2014年全国学术会议大会汇编. 苏州: 中国微循环学会, 2014: 51-52.YANG X J, HAN J Q. Application of laser Doppler flowmetry in the study of tumor angiogenesis[C]//Compilation of 2014 National Aca demic Conference of China microcirculation Society. Suzhou, China: Society of Microcirculation, 2014: 51-52. |
[3] |
胡检, 陈武鹏, 李新强, 等. 氦氖激光对烫伤大鼠皮肤生物效应的实验研究[J]. 中国民族民间医药, 2010, 19(13): 75. doi: 10.3969/j.issn.1007-8517.2010.13.056HU J, CHEN W P, LI X Q, et al. Experimental study on biological effects of He-Ne laser on scalded rat skin[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2010, 19(13): 75(in Chinese). doi: 10.3969/j.issn.1007-8517.2010.13.056 |
[4] |
FOLDVARI M, OGUEJIOFOR C J N, WILSON T W, et al. Transcutaneous delivery of prostaglandin E1: in vitro and laser Doppler flowmetry study[J]. Journal of Pharmaceutical Sciences, 1998, 87(6): 721-725. doi: 10.1021/js970425s |
[5] |
HOU X, HE X F, ZHANG X Y, et al. Using laser Doppler flowmetry with wavelet analysis to study skin blood flow regulations after cupping therapy[J]. Skin Research and Technology, 2021, 27(3): 393-399. doi: 10.1111/srt.12970 |
[6] |
剡冬冬, 张钲. 冠状动脉慢血流研究新进展[J]. 中国循环杂志, 2019, 34(3): 309-312. doi: 10.3969/j.issn.1000-3614.2019.03.020YAN D D, ZHANG Zh. New progress in the study of coronary slow flow[J]. Chinese Circulation Journal, 2019, 34(3): 309-312(in Chinese). doi: 10.3969/j.issn.1000-3614.2019.03.020 |
[7] |
ELGHAFFAR S A, SHEIKH R A, GAAFAR A, et al. Assessment of risk factors, clinical presentation and angiographic profile of coronary slow flow phenomenon[J]. Journal of Indian College of Cardiology, 2022, 12(1): 19-24. doi: 10.4103/jicc.jicc_6_21 |
[8] |
PRESURA C, AKKERMANS A, HEINKS C, et al. Optical blood flow sensor using self-mixing doppler effect: US, WO2006085278A2[P]. 2007-11-28. |
[9] |
常鹏飞. 激光多普勒血流测量及其在神经外科的应用[J]. 国际脑血管病杂志, 1996, 4(2): 95-97.CHANG P F. Laser Doppler blood flow measurement and its application in neurosurgery[J]. International Journal of Cerebrovascular Diseases, 1996, 4(2): 95-97(in Chinese). |
[10] |
黄莺, 邱林, 梅爱莲, 等. 激光多普勒成像对烧伤深度诊断价值的荟萃分析[J]. 中华烧伤杂志, 2017, 33(5): 301-308. doi: 10.3760/cma.j.issn.1009-2587.2017.05.009HUANG Y, QIU L, MEI A L, et al. Meta analysis of the value of laser Doppler imaging in the diagnosis of burn depth[J]. Chinese Journal of Burns, 2017, 33(5): 301-308(in Chinese). doi: 10.3760/cma.j.issn.1009-2587.2017.05.009 |
[11] |
CLAES K E Y, HOEKSEMA H, VYNCKE T, et al. Evidence based burn depth assessment using laser-based technologies: Where do we stand[J]. Journal of Burn Care & Research, 2020, 42(3): 513-525. |
[12] |
ZHENG K J, MIDDELKOOP E, STOOP M, et al. Validity of laser speckle contrast imaging for the prediction of burn wound healing potential[J]. Burns, 2021, 48(2): 45-48. |
[13] |
TOWNSEND R, CRINGLE S J, MORGAN W H, et al. Confocal laser Doppler flowmeter measurements in a controlled flow environment in an isolated perfused eye[J]. Experimental Eye Research, 2005, 82(1): 65-73. |
[14] |
VENKATARAMAN S T, HUDSON C, FISHER J A, et al. Retinal arteriolar and capillary vascular reactivity in response to isoxic hypercapnia[J]. Experimental Eye Research, 2008, 87(6): 535-542. doi: 10.1016/j.exer.2008.08.020 |
[15] |
封东来, 魏东, 李芳, 等. HRF、OCT早期检查及RBP4检测在糖尿病性视网膜病变中的诊断价值[J]. 空军医学杂志, 2019, 35(4): 347-349.FENG D L, WEI D, LI F, et al. Diagnostic value of HRF, OCT and RBP4 in diabetic retinopathy[J]. Medical Journal of Air Force, 2019, 35(4): 347-349(in Chinese). |
[16] |
MILLET C, ROUSTIT M, BLAISE S, et al. Comparison between laser speckle contrast imaging and laser Doppler imaging to assess skin blood flow in humans[J]. Microvascular Research, 2011, 82(2): 147-151. doi: 10.1016/j.mvr.2011.06.006 |
[17] |
魏相飞, 胡骏保, 何锐, 等. 大学物理课程应用之多普勒效应测血液流速[J]. 皖西学院学报, 2018, 34(2): 100-104.WEI X F, HU J B, HE R, et al. Measurement of blood velocity by Doppler effect in College Physics Course[J]. Journal of West Anhui University, 2018, 34(2): 100-104(in Chinese). |
[18] |
刘让雷. 激光多普勒测速中信号的分析与处理研究[D]. 青岛: 青岛科技大学, 2018: 43-54.LIU R L. Solid motion motion measurement based on laser Doppler principle[D]. Qingdao: Qingdao University, 2018: 43-54(in Chinese). |
[19] |
赵洪博, 张达, 杨健坤, 等. 小波分层法在激光多普勒测速信号中的应用[J]. 激光技术, 2019, 43(1): 103-108.ZHAO H B, ZHANG D, YANG J K, et al. Application of wavelet layered method for laser Doppler velocimetry signal[J]. Laser Technology, 2019, 43(1): 103-108(in Chinese). |
[20] |
谈渊, 甘学辉, 张东剑, 等. 基于小波去噪的激光多普勒振动信号处理[J]. 激光技术, 2022, 46(1): 129-133.TAN Y, GAN X H, ZHANG D J, et al. Laser Doppler vibration signal processing based on wavelet denoising[J]. Laser Technology, 2022, 46(1): 129-133(in Chinese). |
[21] |
DORNHORST A C. Review of medical physiology[J]. Anesthesiology, 2001, 52(2): 959-960. |
[22] |
RIVA C, ROSS B, BENEDEK G B. Laser Doppler measurements of blood flow in capillary tubes and lretinal arteries[J]. Investigative Ophthalmology, 1972, 11(11): 936-944. |
[23] |
STERN M D. In vivo evaluation of microcirculation by coherent light scattering[J]. Nature, 1975, 254(5495): 56-58. doi: 10.1038/254056a0 |
[24] |
BONNER R, NOSSAL R. Model for laser Doppler measurements of blood flow in tissue[J]. Applied Optics, 1981, 20(12): 2097-2107. doi: 10.1364/AO.20.002097 |
[25] |
ALSBJÖRN B, MICHEELS J, SØRENSEN B. Laser Doppler flowmetry measurements of superficial dermal, deep dermal and subdermal burns[J]. Scandinavian Journal of Plastic and Reconstructive Surgery, 1984, 18(1): 75-79. doi: 10.3109/02844318409057406 |
[26] |
DROOG E J, STEENBERGEN W, SJÖBERG F. Measurement of depth of burns by laser Doppler perfusion imaging[J]. Burns, 2001, 27(6): 561-568. doi: 10.1016/S0305-4179(01)00021-3 |
[27] |
KYODEN T, ABE S, ISHIDA H, et al. High-resolution in-situ LDV monitoring system for measuring velocity distribution in blood vessel[J]. Optics Communications, 2015, 353: 122-132. doi: 10.1016/j.optcom.2015.04.075 |
[28] |
ARILDSSON M L, NILSSON G E, WARDELL K. Critical design parameters in laser Doppler perfusion imaging[J]. Proceedings of the SPIE, 1996, 2878: 239527. |
[29] |
ALEXANDER S, WIENDELT S, FRITS D M. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor[J]. Optics Letters, 2002, 27(5): 300-302. doi: 10.1364/OL.27.000300 |
[30] |
ALEXANDRE S, THEO L. High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor[J]. Optics Express, 2005, 3(17): 6416-6428. |
[31] |
MENNES O A, NETTEN J J V, SLART R H J A, et al. Novel optical techniques for imaging microcirculation in the diabetic foot[J]. Current Pharmaceutical Design, 2018, 24(12): 1304-1316. doi: 10.2174/1381612824666180302141902 |
[32] |
HE D W, NGUYEN H, HAYES-GILL B, et al. Laser Doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing[J]. Sensors, 2013, 13(9): 12632-12647. doi: 10.3390/s130912632 |
[33] |
王刚. 激光宽场多普勒血液流速系统关键技术研究[D]. 成都: 电子科技大学, 2017: 91-105.WANG G. Research on key technologies of laser Doppler blood flow velocity system[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 91-105(in Chinese). |
[34] |
HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. doi: 10.1126/science.1957169 |
[35] |
FERCHER A F, HITZENBERGER C K, DREXLER W, et al. In vivo optical coherence tomography[J]. American Journal of Ophthalmology, 1993, 116(1): 113-114. doi: 10.1016/S0002-9394(14)71762-3 |
[36] |
俞岚筑, 沈玺. 光学相干断层扫描血管成像在眼部疾病诊断中的应用[J]. 上海交通大学学报(医学版), 2018, 38(7): 829-834. doi: 10.3969/j.issn.1674-8115.2018.07.022YU L Zh, SHEN X. Research progress in diagnosis of eye diseases using optical coherence tomography angiography[J]. Journal of Shanghai Jiaotong University(Medical Science Edition), 2018, 38(7): 829-834(in Chinese). doi: 10.3969/j.issn.1674-8115.2018.07.022 |
[37] |
PUJARI A, SALUJA G, CHAWLA R, et al. Optical coherence tomography angiography in amblyopia: A critical update on current understandings and future perspectives[J]. European Journal of Ophthalmology, 2021, 32(3): 1324-1332. |
[38] |
KAMALIPOUR A, MOGHIMI S, HOU H, et al. OCT angiography artifacts in glaucoma[J]. Ophthalmology, 2021, 128(10): 1426-1437. doi: 10.1016/j.ophtha.2021.03.036 |
[39] |
HU X X, WANG X L, DAI Y, et al. Effect of nimodipine on macular and peripapillary capillary vessel density in patients with normal-tension glaucoma using optical coherence tomography angiography[J]. Current Eye Research, 2021, 46(12): 1-6. |
[40] |
封炎. 基于OCTA的屈光参差性弱视视网膜黄斑部的分析研究[D]. 南昌: 南昌大学, 2021: 22-31.FENG Y. Analysis and study of the macular of retina inanisometropic amblyopia based on OCTA[D]. Nanchang: Nanchang University, 2021: 22-31(in Chinese). |
[41] |
SONMEZ H K, POLAT O A, ERKAN G. Inner retinal layer ischemia and vision loss after COVID-19 infection: A case report[J]. Photodiagnosis and Photodynamic Therapy, 2021, 35: 102406. doi: 10.1016/j.pdpdt.2021.102406 |
[42] |
BILBAOMALAVÉ V, GONZÁLEZ Z J, MANUEL S D V, et al. Persistent retinal microvascular impairment in COVID-19 bilateral pneumonia at 6-months follow-up assessed by optical coherence tomography angiography[J]. Biomedicines, 2021, 9(5): 502. doi: 10.3390/biomedicines9050502 |
[43] |
GUEMES-VILLAHOZ N, BURGOS-BLASCO B, VIDAL-VILLEGAS B, et al. Reduced macular vessel density in COVID-19 patients with and without associated thrombotic events using optical coherence tomography angiography[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259(8): 1-7. |
[44] |
方林, 陈臻, 张希瑞. 光学相干断层扫描血管成像术在早期青光眼诊断中的优势[J]. 中国医疗设备, 2021, 36(11): 150-154. doi: 10.3969/j.issn.1674-1633.2021.11.035FANG L, CHEN Zh, ZHANG X R. Advantages of optical coherence tomography angiography in early diagnosis of glaucoma[J]. China Medical Devices, 2021, 36(11): 150-154(in Chinese). doi: 10.3969/j.issn.1674-1633.2021.11.035 |
[45] |
MIURA M, MURAMATSU D, HONG Y J, et al. Noninvasive vascular imaging of ruptured retinal arterial macroaneurysms by Doppler optical coherence tomography[J]. BMC Ophthalmology, 2015, 15(1): 1-5. doi: 10.1186/1471-2415-15-1 |
[46] |
陆冬筱, 房文汇, 李玉瑶, 等. 光学相干层析成像技术原理及研究进展[J]. 中国光学, 2020, 13(5): 919-935.LU D X, FANG W H, LI Y Y, et al. Optical coherence tomography: Principles and recent developments[J]. Chinese Optics, 2020, 13(5): 919-935(in Chinese). |
[47] |
王丽雯, 崔林, 邹吉新, 等. OCTA在视网膜静脉阻塞诊疗中的应用价值[J]. 国际眼科杂志, 2019, 19(8): 1361-1364.WANG L W, CUI L, ZOU J X, et al. Application value of OCTA examination in diagnosis and treatment of retinal vein occlusion[J]. International Eye Science, 2019, 19(8): 1361-1364(in Chinese). |
[48] |
仲妍, 车慧欣. 光学相干断层扫描血管成像(OCTA)在原发性青光眼患者中的检测价值[J]. 眼科新进展, 2018, 38(4): 352-356.ZHONG Y, CHE H X. Detective values of optical coherence tomography angiography for primary glaucoma[J]. Recent Advances in Ophthalmology, 2018, 38(4): 352-356(in Chinese). |
[49] |
SAKAI J, MINAMIDE K J, NAKAMURA S, et al. Retinal arteriole pulse waveform analysis using a fully-automated Doppler optical coherence tomography flowmeter: A pilot study[J]. Translational Vision Science & Technology, 2019, 8(3): 13. |
[50] |
KISELEVA E, RYABKOV M, BALEEV M, et al. Prospects of intraoperative multimodal OCT application in patients with acute mesenteric ischemia[J]. Diagnostics, 2021, 11(4): 705. doi: 10.3390/diagnostics11040705 |
[51] |
韦赢兆, 袁钘, 蓝公仆, 等. 心血管光学相干层析成像的研究进展和应用[J]. 激光与光电子学进展, 2021, 58(24): 2400002.WEI Y Zh, YUAN Q, LAN G P, et al. Research progress and application of cardiovascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2400002(in Chinese). |
[52] |
朱梦琪, 张敏燕, 徐康, 等. 光声血流速度测量方法及研究进展[J]. 光学仪器, 2021, 43(1): 88-94.ZHU M Q, ZHANG M Y, XU K, et al. The methods and research progress of photoacoustic blood flow velocity measurement[J]. Optical Instruments, 2021, 43(1): 88-94(in Chinese). |
[53] |
GIFANI M, EDDINS D J, KOSUGE H, et al. Ultraselective carbon nanotubes for photoacoustic imaging of inflamed atherosclerotic plaques[J]. Advanced Functional Materials, 2021, 31(37): 2101005. doi: 10.1002/adfm.202101005 |
[54] |
AMIDI E, YANG G, UDDIN K M S, et al. Role of blood oxygenation saturation in ovarian cancer diagnosis using multi-spectral photoacoustic tomography[J]. Journal of Biophotonics, 2020, 14(4): e202000368. |
[55] |
尹荣贻, 仝雨, 赵友全, 等. 光学多普勒血液微循环测量技术及其最新进展[J]. 光学技术, 2013, 39(2): 112-123.YIN R Y, TONG Y, ZHAO Y Q, et al. Optical Doppler technologies for micro-circulation measurement and their recent progress[J]. Optical Technique, 2013, 39(2): 112-123(in Chinese). |
[56] |
BELL A G. Upon the production and reproduction of sound by light[J]. American Journal of Society, 1880, S3-20(118): 305-324. |
[57] |
SHEINFELD A, GILEAD S, EYAL A. Photoacoustic Doppler measurement of flow using tone burst excitation[J]. Optics Express, 2010, 18(5): 4212-4221. |
[58] |
黄珊珊, 聂立铭. 光声成像在生物医学研究中的应用进展[J]. 厦门大学学报(自然科学版), 2019, 58(5): 625-636.HUANG Sh Sh, NIE L M. Recent progresses of photoacoustic imaging in biomedical applications[J]. Journal of Xiamen University(Natural Science Edition), 2019, 58(5): 625-636(in Chinese). |
[59] |
VALLURU K S, WILLMANN J K. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 2016, 35(4): 267-280. |
[60] |
MIAO Q Q, LYU Y, DING D, et al. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH[J]. Advanced Materials, 2016, 28(19): 3662-3670. |
[61] |
DENG H, SHANG W, LU G, et al. Targeted and multifunctional technology for identification between hepatocellular carcinoma and liver cirrhosis[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14526-14537. |
[62] |
张建英, 谢文明, 曾志平, 等. 光声成像技术的最新进展[J]. 中国光学, 2011, 4(2): 111-117.ZHANG J Y, XIE W M, ZENG Zh P, et al. Recent progress in photoacoustic imaging technology[J]. Chinese Optics, 2011, 4(2): 111-117(in Chinese). |
[63] |
乔伟, 陈重江. 基于光学相干检测的非接触式光声多普勒流速仪[J]. 激光生物学报, 2018, 27(4): 338-344.QIAO W, CHEN Ch J. Noncontact photoacoustic Doppler flowmetry based on optical coherent detection[J]. Acta Laser Biology Sinica, 2018, 27(4): 338-344(in Chinese). |
[64] |
杨晨. 高性能光声成像技术研究[D]. 合肥: 中国科学技术大学, 2021: 62-88.YANG Ch. Photoacoustic lmaging with enhanced sensitivity, resolution and speed[D]. Hefei: University of Science and Technology of China, 2021: 62-88(in Chinese). |
[65] |
巩飞, 程亮, 刘庄. 基于纳米探针的肿瘤光声成像研究[J]. 激光与光电子学进展, 2020, 57(18): 180004.GONG F, CHENG L, LIU Zh. Application of nanoprobes in photoacoustic cancer imaging[J]. Laser & Optoelectronics Progress, 2020, 57(18): 180004. |
[66] |
林日强, 冷吉, 陈敬钦, 等. 面向临床应用的光声成像技术[J]. 中国医疗设备, 2018, 33(1): 1-5.LIN R Q, LENG J, CHEN J Q, et al. Photoacoustic lmaging technology for clinical applications[J]. China Medical Devices, 2018, 33(1): 1-5(in Chinese). |
[67] |
VENKATESH R, JAYADEV C, SRIDHARAN A, et al. Internal limiting membrane detachment in acute central retinal artery occlusion: A novel prognostic sign seen on OCT[J]. International Journal of Retina and Vitreous, 2021, 7(1): 51. |
[68] |
ZHANG H F, PULIAFITO C A, JIAO Sh L. Photoacoustic ophthalmoscopy for in vivo retinal imaging: Current status and prospects[J]. Ophthalmic Surgery, Lasers & Imaging, 2011, 42(s0): 106-115. |
[69] |
宋伟. 视网膜组织光学吸收特性的光致超声成像研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 73-102.SONG W. Investigation of photoacousticimaging on optical absorption property of retina[D]. Harbin: Harbin Institute of Technology, 2014: 73-102(in Chinese). |
[70] |
齐伟智. 应用于早期口腔癌的光学分辨率光声显微成像系统[D]. 成都: 电子科技大学, 2018: 53-62.QI W Zh. Optical-resolution photoacoustic microscopy for early-stage oral cancer detection[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 53-62(in Chinese). |
[71] |
DENIZ E, MISEMILY K, LANE M, et al. CRISPR/Cas9 F0 screening of congenital heart disease genes in xenopus tropicalis. [J]. Methods in Molecular Biology, 2018, 1865: 163-174. |
[72] |
王龙, 金保哲, 张新中. 脑血流监测对大鼠脑缺血模型制备的评价作用[J]. 中国脑血管病杂志, 2017, 14(5): 254-260.WANG L, JIN B Zh, ZHANG X Zh. Effects of the monitoring of cerebral blood flow in the preparation of cerebral ischemia model in rats[J]. Chinese Journal of Cerebrovascular Diseases, 2017, 14(5): 254-260(in Chinese). |
[73] |
ZHANG Zh, TANG W W, LI Y F, et al. Bioinspired conjugated tri-porphyrin-based intracellular ph-sensitive metallo-supramolecular nanoparticles for near-infrared photoacoustic imaging-guided chemo-and photothermal combined therapy[J]. ACS Biomaterials Science & Engineering, 2021, 7(9): 4503-4508. |
[74] |
WANG Y M, BOWER B A, IZATT J A, et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography[J]. Journal of Biomedical Optics, 2007, 12(4): 041215. |
[75] |
潘柳华, 张向阳, 李中梁, 等. 基于光声-光学相干层析成像的血流测量技术[J]. 中国激光, 2018, 45(6): 0607004.PAN L H, ZHANG X Y, LI Zh L, et al. Blood flow measurementwith photoacoustic microscopy and optical coherence tomography[J]. Chinese Journal of Lasers, 2018, 45(6): 0607004(in Chinese). |
[76] |
SABIONI L, de LORENZO A, LAMAS C, et al. Systemic microvascular endothelial dysfunction and disease severity in COVID-19 patients: Evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis[J]. Microvascular Research, 2021, 134: 104119. |