高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1维石墨烯光子晶体的电磁吸收特性

宁仁霞 刘少斌 章海锋 孔祥鲲 卞博锐

引用本文:
Citation:

1维石墨烯光子晶体的电磁吸收特性

    作者简介: 宁仁霞(1978-),女,讲师,主要从事等离子体光子晶体、石墨烯光子晶体电磁特性研究。E-mail:nrxxiner@hsu.edu.cn.
  • 基金项目:

    国家自然科学基金资助项目(61307052);航空科学基金资助项目(20121852030);江苏省自然科学基金资助项目(BK2011727);黄山学院科研资助项目(2010xkj006);江苏省普通高校研究生科研创新计划资助项目(CXZZ13-0166);安徽省教育厅自然科学研究资助项目(KJ2013B267);大学生创新创业训练计划资助项目(201210375030)

  • 中图分类号:

    O734

Electromagnetic absorption characteristics of 1-D graphene photonic crystals

  • CLC number:

    O734

  • 摘要: 为了研究1维石墨烯光子晶体在可见光波段的吸收特性,采用传输矩阵的方法进行了理论分析和数值仿真,得到了1维石墨烯吸收特性与石墨烯层数、缺陷层介质厚度、电磁波模式有关的结果。结果表明,增加石墨烯层数时,对波长为556nm左右的绿光的吸收作用明显增强;缺陷层介质厚度增加时会引起吸收峰的增加;在TE模式下,入射角对石墨烯光子晶体吸收特性影响较小。该研究结果为1维石墨烯光子晶体吸收器的设计提供了理论依据。
  • [1]

    JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J].Phyical Review Letters, 1987,58(23):2486-2489.
    [2]

    YABLONOVITCH E.Inhibited spontaneous emission in solid-state physics and electronics[J].Physical Review Letters, 1987,58(20): 2059-2061.
    [3]

    ZHANG H F,ZHENG J P,ZHU R J. Analysis of transmission characteristics of 1-D ternary magnetized plasma photonic crystals[J]. Laser Technology,2012,36(2):208-216(in Chinese).
    [4]

    XIONG C X, JIANG L J. Influence of material dispersion on defect modes of 1-Dphotonic crystal[J]. Laser Technology,2013,37(6):743-746(in Chinese).
    [5]

    GOTO T, INOUE M.Magnetophotonic crystal comprising electrooptical layer for controlling helicity of light[J]. Journal of Applied Physics, 2012,111(7): 07A913.
    [6]

    LIU Sh B,ZHU Ch X,YUAN N Ch.FDTD simulation for plasma photonic crystals[J].Acta Physica Sinica,2005,54(6):2804-2808(in Chinese).
    [7]

    WANG L G, CHEN H, ZHU S Y.Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials[J].Physical Review, 2004,B70(24):245102.
    [8]

    ZHANG H F, LIU Sh B, KONG X K, et al. The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure[J].Physics of Plasmas, 2013, 20(4): 042110.
    [9]

    HOJO H, MASE A.Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals[J]. Plasma and Fusion Research, 2004, 80(4): 89-92.
    [10]

    LI W, ZHANG H T,GONG M L,et al.Plasma photonic crystal[J].Optical Technique, 2004,30(1):263-266(in Chinese).
    [11]

    KONG X K,WANG Y Sh,YANG H W,et al. Study on cut-off frequency of 1-D plasma photonic crystals[J].Laser Technology,2011,35(1):126-129(in Chinese).
    [12]

    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696): 666-669.
    [13]

    NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308.
    [14]

    BONACCORSO F,SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J].Nature Photonics,2010,4(9):611-622.
    [15]

    FURCHI M, URICH A, POSPISCHIL A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters,2012,12(6):2773-2777.
    [16]

    FERREIRA A, PERES N M R, RIBEIRO R M, et al. Graphene-based photodetector with two cavities[J].Physical Review,2012,B85(11):115438.
    [17]

    AREFINIA Z,ASGARI A.Novel attributes in the scaling and performance considerations of the one-dimensional graphene-based photonic crystals for terahertz applications[J].Physica,2013,E54(12):34-39.
    [18]

    VINCENTI M A, de CEGLIA D, GRANDE M, et al. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect[J].Optics Letters,2013,38(18): 3550-3553.
    [19]

    LIU J T, LIU N H, LI J, et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J].Applied Physics Letters,2012,101(5):052104.
    [20]

    WANG H. An eigen matrix method for obtaining the band structure of photonic crystals [J] Acta Physica Sinica, 2004,50(11):2172-2178(in Chinese).
    [21]

    BRUNA M, BORINI S.Optical constants of graphene layers in the visible range[J].Applied Physics Letters,2009,94(3):031901.
    [22]

    PARIDA S, ROUT S K, CAVALCANTE L S, et al. Structural refinement, optical and microwave dielectric properties of BaZrO3 [J]. Ceramics International, 2012,38(3):2129-2138.
    [23]

    LUPINA G, DABROWSKI J, DUDEK P, et al. Dielectric constant and leakage of BaZrO3 films[J].Applied Physics Letters,2009,94(15):152903.
    [24]

    FUENZALIDA V M, PILLEUX M E. Hydrothermally grown BaZrO3 films on zirconium metal: microstructure, X-ray photoelectron spectroscopy, and Auger electron spectroscopy depth profiling[J].Journal of Materials Research,1995,10(11):2749-2754.
    [25]

    FREDERIKSE H P R.CRC handbook of chemistry and physics[M]. Boca Raton, FL,USA:CRC Press, 2003:195.
    [26]

    WINDT D L, CASH W C, Jr, SCOTT M, et al. Optical constants for thin films of Ti, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Os, Pt, and Au from 24to 1216[J].Applied Optics,1988, 27(2):246-278.
    [27]

    PALIK E D.Handbook of optical constants of solids[M].New York,USA: Elsevier,1998:240-249.
    [28]

    RAKIC A D, DJURISIC A B, ELAZAR J M,et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J].Applied Optics,1998,37(22):5271-5283.
    [29]

    ZHANG Y, TANG T T, GIRIT C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J].Nature,2009,459(7248):820-823.
    [30]

    ZHANG H F,ZHENG J P,YANG G H.The forbidden band gap of tiame-varying magnetized plasma photonic crystals[J]. Laser Physics,2011,30(1):74-78(in Chinese).
    [31]

    FANG Y T, HE S. Transparent structure consisting of metamaterial layers and matching layers[J].Physical Review, 2008,A78(2):2381301.
  • [1] 韦应生苏安许江勇唐秀福蒙成举高英俊 . 四元异质结构光子晶体的双通道光学滤波特性. 激光技术, 2018, 42(2): 212-216. doi: 10.7510/jgjs.issn.1001-3806.2018.02.014
    [2] 王军阵汪岳峰白慧君 . 基于传输矩阵法的纵向啁啾体光栅衍射特性. 激光技术, 2015, 39(1): 61-64. doi: 10.7510/jgjs.issn.1001-3806.2015.01.012
    [3] 熊翠秀蒋练军 . 材料色散对1维光子晶体缺陷模影响的研究. 激光技术, 2013, 37(6): 742-746. doi: 10.7510/jgjs.issn.1001-3806.2013.06.008
    [4] 熊翠秀邓杨保邓曙光王景艳 . 峰值折射率对正弦型函数光子晶体缺陷模的影响. 激光技术, 2014, 38(6): 817-821. doi: 10.7510/jgjs.issn.1001-3806.2014.06.020
    [5] 韦吉爵苏安高英俊梁祖彬陈颖川白书琼 . 缺陷对光子晶体透射能带谱的简并效应研究. 激光技术, 2017, 41(1): 56-60. doi: 10.7510/jgjs.issn.1001-3806.2017.01.012
    [6] 熊翠秀蒋练军王景艳 . 正负折射率含缺陷1维光子晶体多通道滤波器. 激光技术, 2014, 38(4): 475-479. doi: 10.7510/jgjs.issn.1001-3806.2014.04.009
    [7] 章海锋郑建平朱荣军 . 1维3元磁化等离子体光子晶体传输特性分析. 激光技术, 2012, 36(2): 208-212,216. doi: 10.3969/j.issn.1001-3806.2012.02.016
    [8] 范俊方云团 . 消逝波在普通介质1维光子晶体中的传输. 激光技术, 2010, 34(5): 676-678. doi: 10.3969/j.issn.1001-3806.2010.O5.027
    [9] 陈海波胡素梅高英俊 . 复介电缺陷层镜像对称1维光子晶体特性研究. 激光技术, 2008, 32(5): 531-533.
    [10] 章海锋蓝鹏飞杨国华肖正泉 . 1维3元非磁化等离子体光子晶体禁带特性研究. 激光技术, 2011, 35(4): 566-569,572. doi: 10.3969/j.issn.1001-3806.2011.04.031
    [11] 高雯婧梁良 . 含增益缺陷层的1维三元光子晶体特性研究. 激光技术, 2013, 37(2): 147-150. doi: 10.7510/jgjs.issn.1001-3806.2013.02.003
    [12] 马荣坤张亦驰方云团 . 基于石墨烯和1维光子晶体的THz宽带吸收器. 激光技术, 2017, 41(5): 723-727. doi: 10.7510/jgjs.issn.1001-3806.2017.05.021
    [13] 赵艳王海龙 . 2维混合介质柱光子晶体传输特性的研究. 激光技术, 2010, 34(3): 294-296,315. doi: 10.3969/j.issn.1001-3806.2010.03.002
    [14] 张永强王贵兵唐小松 . 复合材料激光辐照过程中的吸收特性分析. 激光技术, 2009, 33(6): 590-592,596. doi: 10.3969/j.issn.1001-3806.2009.06.009
    [15] 廖秋雨张煜熔吴智杭叶婷张克非 . 周期性石墨烯盘表面拓扑边界传输态研究. 激光技术, 2021, 45(5): 642-646. doi: 10.7510/jgjs.issn.1001-3806.2021.05.018
    [16] 詹仪李效增郑义 . 光子晶体光纤的色散特性分析. 激光技术, 2009, 33(1): 24-26.
    [17] 龙涛刘启能 . 1维掺杂光子晶体中光的全反射贯穿特性. 激光技术, 2011, 35(5): 622-625. doi: 10.3969/j.issn.1001-3806.2011.05.013
    [18] 邢俊娜何红霞池灏 . 基于光子学的微波信号频率测量研究进展. 激光技术, 2018, 42(3): 404-409. doi: 10.7510/jgjs.issn.1001-3806.2018.03.022
    [19] 王天亮袁牧野刘波徐志康 . 基于微波光子学的倍频三角波生成方法. 激光技术, 2019, 43(1): 79-82. doi: 10.7510/jgjs.issn.1001-3806.2019.01.016
    [20] 张志新肖峻 . 1维光子晶体的能带结构分析. 激光技术, 2015, 39(4): 525-527. doi: 10.7510/jgjs.issn.1001-3806.2015.04.021
  • 加载中
计量
  • 文章访问数:  3957
  • HTML全文浏览量:  771
  • PDF下载量:  431
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-16
  • 录用日期:  2014-02-24
  • 刊出日期:  2015-01-25

1维石墨烯光子晶体的电磁吸收特性

    作者简介: 宁仁霞(1978-),女,讲师,主要从事等离子体光子晶体、石墨烯光子晶体电磁特性研究。E-mail:nrxxiner@hsu.edu.cn
  • 1. 黄山学院 机电与信息工程学院, 黄山 245041;
  • 2. 南京航空航天大学 电子信息工程学院 雷达成像与微波光子技术教育部重点实验室, 南京 210016
基金项目:  国家自然科学基金资助项目(61307052);航空科学基金资助项目(20121852030);江苏省自然科学基金资助项目(BK2011727);黄山学院科研资助项目(2010xkj006);江苏省普通高校研究生科研创新计划资助项目(CXZZ13-0166);安徽省教育厅自然科学研究资助项目(KJ2013B267);大学生创新创业训练计划资助项目(201210375030)

摘要: 为了研究1维石墨烯光子晶体在可见光波段的吸收特性,采用传输矩阵的方法进行了理论分析和数值仿真,得到了1维石墨烯吸收特性与石墨烯层数、缺陷层介质厚度、电磁波模式有关的结果。结果表明,增加石墨烯层数时,对波长为556nm左右的绿光的吸收作用明显增强;缺陷层介质厚度增加时会引起吸收峰的增加;在TE模式下,入射角对石墨烯光子晶体吸收特性影响较小。该研究结果为1维石墨烯光子晶体吸收器的设计提供了理论依据。

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回