Abstract:
The output wavelength and power of a semiconductor laser varied with the temperature. In order to ensure the performance of laser, constant temperature must be controlled. A high precision temperature control system of bidirectional high current output was designed by using pulse width modulation power driver DRV595 to drive the semiconductor cooler. In the
S domain, the system was modeled and analyzed, and the classical proportional-integral-differential controller was built. The bridge type sampling resistor was adopted to realize the pure hardware circuit. The structure was simple, and the complex software of the digital controller was omitted. After normal temperature test, the control accuracy of ±0.03℃ was achieved. Pulse width modulation and bidirectional MOSFET were integrated in DRV595. The biggest output current was ±4A. No-dead-time control was realized by using bi-directional current to drive semiconductor cooler. The results show that pulse width modulation mode drive and low output stage resistor greatly reduce power dissipation. The system has the advantages of stable operation, low power consumption, high control accuracy and practical value.