-
根据光脉冲在单模光纤内传输的非线性薛定谔方程[18],若不考虑单模光纤的损耗(即α=0):
$ \mathrm{i} \frac{\partial A}{\partial z}+\frac{\mathrm{i} \alpha}{2} A-\frac{\beta_{2}}{2} \frac{\partial^{2} A}{\partial T^{2}}+\gamma|A|^{2} A=0 $
(1) 式中,A为脉冲包络的慢变振幅,z是光脉冲传输的距离,α是衰减系数,γ是非线性参量,T是随脉冲以群速度移动的参考系中的时间,β2是群速度色散系数,γ|A|2A项是光纤的非线性效应。群速度色散系数β2与色散系数D的关系如下:
$ D = - 2{\rm{\mathtt{π}}}c{\beta _2}/{\lambda ^2} $
(2) 式中,D是色散系数,c是光速,λ是波长。
利用下式归一化振幅:
$ A(z, \tau)=\sqrt{P_{0}} \exp (-\alpha z / 2) U(z, \tau) $
(3) 式中,P0是入射脉冲的峰值功率,U是归一化振幅,τ是T对初始脉冲宽度T0的归一化时间。将(3)式代入(1)式得:
$ \mathrm{i} \frac{\partial U}{\partial z}=\frac{\operatorname{sgn}\left(\beta_{2}\right)}{2 L_{\mathrm{d}}} \frac{\partial^{2} U}{\partial \tau^{2}}-\frac{\exp (-\alpha z)}{L_{\mathrm{NL}}}|U|^{2} U $
(4) 式中,Ld=T02/|β2|为色散长度, LNL=1/(γP0)为非线性长度。
令(1)式中的γ=0,即不考虑传输中非线性效应, 再利用(3)式归一化振幅得:
$ \mathrm{i} \partial U / \partial z=\left(\beta_{2} / 2\right)\left(\partial^{2} U / \partial T^{2}\right) $
(5) 对(5)式进行傅里叶变换得:
$ \partial \widetilde{U} / \partial z=\mathrm{i} \beta_{2} \omega^{2} \widetilde{U} / 2 $
(6) 式中,${\tilde U}$是U的傅里叶变换,ω是角频率。其解为:
$ \widetilde{U}(z, \omega)=\widetilde{U}(0, \omega) \exp \left(\frac{\mathrm{i}}{2} \beta_{2} \omega^{2} z\right) $
(7) 那么,有:
$ \begin{array}{*{20}{c}} {U(z, T) = \frac{1}{{2{\rm{\mathtt{π}}}}}\int_{ - \infty }^\infty {\rm{ }} \tilde U(0, \omega ) \times }\\ {\exp \left( {\frac{{\rm{i}}}{2}{\beta _2}{\omega ^2}z + {\rm{i}}\omega T} \right){\rm{d}}\omega } \end{array} $
(8) 最终光纤的色散效应会使信号脉冲展宽。而色散补偿技术利用了上式的线性特性。
DCF色散补偿技术有以下方式:前补偿、后补偿和对称补偿。对于由两段光纤组成的色散补偿方式,色散表达式为:
$ \begin{array}{*{20}{c}} {U\left( {{L_{\rm{m}}}, T} \right) = \frac{1}{{2{\rm{\mathtt{π}}}}}\int_{ - \infty }^\infty {\rm{ }} \tilde U(0, \omega )\exp \left[ {\frac{{\rm{i}}}{2}{\omega ^2} \times } \right.}\\ {\left. {\left( {{\beta _{21}}{L_1} + {\beta _{22}}{L_2}} \right) + {\rm{i}}\omega T} \right]{\rm{d}}\omega } \end{array} $
(9) 式中, Lm=L1+L2是光脉冲信号传输的距离,β21和β22分别为第1段光纤的群速度色散系数和第2段光纤的群速度色散系数;L1和L2分别为第1段光纤的长度和第2段光纤的长度。显然,色散补偿就是让接收的光脉冲与发射的光脉冲一致,即U(Lm, T)=U(0, T),所以色散补偿的条件为:
$ {\beta _{21}}{L_1} + {\beta _{22}}{L_2} = 0 $
(10) 代入(2)式可得:
$ {D_1}{L_1} + {D_2}{L_2} = 0 $
(11) 式中,D1和D2分别是第1段光纤的色散系数和第2段光纤的色散系数。
基于光纤差分相移键控的色散补偿方案的研究
Study on dispersion compensation schemes based on DPSK of fiber
-
摘要: 为了研究光差分相移键控(DPSK)调制格式在光纤高速传输系统中的色散补偿, 利用色散补偿光纤(DCF)的色散补偿原理, 对40Gbit/s光纤传输系统进行色散补偿, 分析了40Gbit/s单通道光纤传输系统中3种DPSK调制格式信号的频谱特性; 仿真了3种码型的色散容忍度以及3种调制格式在考虑光纤的非线性下的色散补偿方案。结果表明, 光非归零码差分相移键控(NRZ-DPSK)信号具有最好的色散容忍度, 但其受非线性的影响比较大; 33%归零码差分相移键控(33%RZ-DPSK)信号的色散容忍度差, 但其色散补偿后的效果优于NRZ-DPSK; 而载波抑制归零码差分相移键控信号对色散和非线性效应都有较好的抑制; 3种DPSK调制格式均在对称补偿2方案中色散补偿的效果最佳。此仿真研究对光DPSK信号在光纤中的色散补偿具有参考意义。Abstract: In order to study dispersion compensation of optical differential phase shift keying (DPSK) modulation format in high-speed optical fiber transmission system, dispersion compensation principle of dispersion compensation fiber was used to compensate the dispersion of 40Gbit/s optical fiber transmission system. The spectrum characteristics of three DPSK modulation formats in 40Gbit/s single channel optical fiber transmission system were analyzed. The dispersion tolerance of three codes was simulated. When considering the nonlinearity of optical fibers, dispersion compensation schemes of three modulation schemes were simulated. The results show that, optical non-return-to-zero differential phase shift keying (NRZ-DPSK) signal has the best dispersion tolerance, but it is greatly affected by non-linearity. 33% return-to-zero differential phase shift keying signal has poor dispersion tolerance, but the effect of dispersion compensation is better than that of NRZ-DPSK. Carrier-suppressed return-to-zero differential phase shift keying signals can suppress both dispersion and nonlinearity. Three DPSK modulation schemes have the best dispersion compensation effect in symmetrical compensation scheme 2. This simulation study has reference significance for dispersion compensation of optical DPSK signal in optical fiber.
-
[1] FAN Zh, GUANG W Q, ZHOU H, et al. Research on dispersion compensation for OFDM signal fiber transmission [J]. Laser Technology, 2011, 35(1):112-116(in Chinese). [2] CAO X. Optimization of dispersion compensation in optical fiber communication systems[J]. Laser Technology, 2014, 38(1):101-104(in Chinese). [3] WANG X D, LI S W, MIAO Sh G, et al. Evolution and compression of self-similar pulse-pairs in dispersion decreasing fiber [J]. Laser Technology, 2014, 38(4):533-537 (in Chinese). [4] CAI J, ZHANG L, ZHAO Y J, et al. Dispersion management scheme of quasi-linear optical transmission system [J]. Chinese Journal of Quantum Electronics, 2015, 32(3):378-384 (in Chinese). [5] MAO X R, ZHANG J H, ZHAO Q. Combined scheme research on static and dynamic dispersion compensation based on Optisystem [J]. Journal of Applied Optics, 2015, 36(6):888-892 (in Chinese). doi: 10.5768/JAO201536.0602002 [6] XIE L N, CAO L, ZHANG L, et al. Techniques for Kerr nonlinearity compensation in fiber communication systems [J]. Laser & Optoelectronics Progress, 2019, 56(6):060002 (in Chinese). [7] AN Y D, WANG J F, ZHANG Ch X, et al. The excitation and propagation of high-amplitude pulses in nonlinear dispersion-decreasing fiber [J]. Journal of Quantum Optics, 2016, 22(2):140-147(in Chinese). [8] CAO W H, WANG Y, LIU S H. Dispersion and nonlinearity compensation in optical fiber communication systems by optical phase conjugation incorporated pulse prechirp[J]. Acta Optica Sinica, 2012, 32(9):0906005(in Chinese). doi: 10.3788/AOS201232.0906005 [9] WANG X B, WANG Y L, YANG Y B, et al. Comparison of OOK transmission performance in different FBG dispersion compensation structures [J]. Laser & Infrared, 2017, 47(1):87-91(in Chinese). [10] LIU X L, XIONG X J. Performance analysis of photoelectric dispersion compensation technology based on optisystem[J]. Electronic Measurement Technology, 2017, 40(11):114-119(in Chinese). [11] JIANG T, ZHANG K F, WANG Y X, et al. Research of dispersion compensation for 40Gb/s metro network based on optisystem[J]. Laser Journal, 2016, 37(9):27-30(in Chinese). [12] ZHANG X, XU H Y, NIU H G, et al. Comparison of two new modulation format in optical fiber communication system[J]. Optical Communication Technology, 2008, 32(9):9-12(in Chinese). [13] HE Zh. Research on advanced modulation scheme in high speed optical communication system[D].Wuhan: Huazhong University of Science and Technology, 2011: 24-35(in Chinese). [14] WANG Zh X, TAO L, HUANG X X, et al. Applications of advanced modulation formats in short-range optical communication systems[J]. Study on Optical Communications, 2014(3):11-14(in Chinese). [15] HUI Zh Q, ZHANG J G. Recent progress in all-optical NRZ-to-RZ format conversion[J]. Laser & Optoelectronics Progress, 2012, 49(6):060003(in Chinese). [16] ZHOU W T, CUI L M, WANG X, et al. Ultra-long span unrepeatered fiber optical communication system with nonlinear compensation algorithm[J]. Study on Optical Communications, 2018(4):14-17(in Chinese). [17] LI M X, CHEN H, ZHANG Y L, et al. The realization of ultra-long distance transmission on G.652 optical fiber with PMD-QPSK and coherent detection techniques [J]. Designing Techniques of Posts and Telecommunications, 2011(11):18-20(in Chinese). [18] AGRAWAL G P. Nonlinear fiber optics[M]. New York, USA: Academic Press, 2014:5-56. [19] PENG W J, PAN W, YAN L Sh, et al. Optical generation of microwave signals with multiple modulation formats based on Mach-Zehnder modulators [J]. Journal of Optoelectronics·Laser, 2017, 28(11):1198-1204 (in Chinese). [20] XU K, ZHOU G T, WU L, et al. Comparisons of high speed optical modulation formats using LiNbO3 optical waveguide modulators[J]. Journal of Beijing University of Posts and Telecommunications, 2004, 27(4):50-54(in Chinese). [21] YING X Y, XU T F, LIU T J, et al. New method for generation of RZ/CSRZ-DQPSK signals based on MZM[J]. Infrared and Laser Engineering, 2012, 41(3):755-758(in Chinese).