-
图 1为两步相移干涉数字全息系统示意图。系统的主体为一个Mach-Zehnder干涉仪,其中,光源为一个波长为632.8nm的He-Ne激光器。He-Ne激光器发出的光束经过透振方向沿竖直方向的偏振器P后入射扩束器(beam expander, BE),经过扩束器BE扩束后的光束由消偏振分光棱镜(non-polarizating beam splitter, NPBS)NPBS1分为参考波和物光波。在参考波光路中,放置一个光学相移单元(phase shifting unit, PSU),用于调节参考光的相位。在物光波光路中,一个微透镜阵列(microlens array,MA)作为待检测物体放置于4倍显微镜物镜(microscopic objective, MO)的前焦平面上。通过待测物体的物光波经一个由显微镜物镜MO和消色差透镜L组成的显微放大系统放大。Im为像平面, 放大后的物光波和参考波合束于消偏振分光棱镜NPBS2。型号相同的两个CCD,即CCD1和CCD2分别放置于距像平面为D1和D2的位置,用于采集对应位置的干涉图样。CCD型号为DMK 23G274, 分辨率为1600pixel×1200pixel,像素尺寸为4.4μm。
CCD1与像平面(x0, y0)的距离为d1。设Od1为物光波O(x0, y0)在自由空间中传播d1距离后的复振幅分布,可表示为:
$ {\mathit{\boldsymbol{O}}_{{d_1}}}\left( {{x_1}, {y_1}, {z_1}} \right) = {{\mathscr{F}}^{ - 1}}\left\{ {{\mathscr{F}}\left[ {\mathit{\boldsymbol{O}}\left( {{x_0}, {y_0}} \right)} \right] \cdot {\mathit{\boldsymbol{G}}_{{d_1}}}} \right\} $
(1) 式中,${\mathscr{F}}\left\{ {} \right\}$和${{\mathscr{F}}^{ - 1}}\left\{ {} \right\}$分别表示傅里叶变换和逆傅里叶变换。Gd1为自由空间传递函数,表示为:
$ {\mathit{\boldsymbol{G}}_{{d_1}}}\left( {\xi , \eta , {\mathit{\boldsymbol{d}}_1}} \right) = \exp \left[ {{\rm{i}}k{\mathit{\boldsymbol{d}}_1}\sqrt {1 - {{(\lambda \xi )}^2} - {{(\lambda \eta )}^2}} } \right] $
(2) 式中,ζ和η为频域空间坐标,λ为激光波长。设平面参考波为R,则在d1位置处的干涉强度分布A11可表示为:
$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{11}}\left( {{x_1}, {y_1}, {\mathit{\boldsymbol{d}}_1}} \right) = }\\ {{{\left| {{\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}}} \right|}^2} + |\mathit{\boldsymbol{R}}{|^2} + {\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}}{\mathit{\boldsymbol{R}}^*} + {\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}} \cdot \mathit{\boldsymbol{R}}} \end{array} $
(3) 在参考光中引入π的相移后,d1处干涉图样的强度分布A12可写为:
$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{A}}_{12}}\left( {{x_1}, {y_1}, {\mathit{\boldsymbol{d}}_1}} \right) = }\\ {{{\left| {{\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}}} \right|}^2} + |\mathit{\boldsymbol{R}}{|^2} - {\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}}{\mathit{\boldsymbol{R}}^*} - {\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}} \cdot \mathit{\boldsymbol{R}}} \end{array} $
(4) 则由(3)式和(4)式可得:
$ {\mathit{\boldsymbol{A}}_{11}} - {\mathit{\boldsymbol{A}}_{12}} = 2{\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}}\mathit{\boldsymbol{R}}_1^* + 2\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}^*\mathit{\boldsymbol{R}} $
(5) 同时对(5)式两边进行傅里叶变换可得:
$ {\mathscr{F}}\left\{ {{\mathit{\boldsymbol{A}}_{11}} - {\mathit{\boldsymbol{A}}_{12}}} \right\} = {\mathscr{F}}\left\{ {2{\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}}{\mathit{\boldsymbol{R}}^*} + 2\mathit{\boldsymbol{O}}_{{\mathit{\boldsymbol{d}}_1}}^*\mathit{\boldsymbol{R}}} \right\} $
(6) 为简化计算,假设平面参考波R的复振幅为1。根据(2)式,可知Gd1的复共轭Gd1*和G-d1相等,再将(1)式和(2)式代入(6)式可得:
$ \begin{array}{*{20}{c}} {{\mathscr{F}}\left\{ {{\mathit{\boldsymbol{A}}_{11}} - {\mathit{\boldsymbol{A}}_{12}}} \right\} = }\\ {2{\cal T}\left\{ \mathit{\boldsymbol{O}} \right\} \cdot {\mathit{\boldsymbol{G}}_{{\mathit{\boldsymbol{d}}_\mathit{\boldsymbol{1}}}}} + 2{\cal T}\left\{ {{\mathit{\boldsymbol{O}}^*}} \right\} \cdot {\mathit{\boldsymbol{G}}_{ - {\mathit{\boldsymbol{d}}_1}}}} \end{array} $
(7) 同理,通过位于距像平面(x0, y0)为d2的CCD2上所记录的两幅干涉图也可以得到如下式所示关系:
$ \begin{array}{*{20}{c}} {{\mathscr{F}}\left\{ {{\mathit{\boldsymbol{A}}_{21}} - {\mathit{\boldsymbol{A}}_{22}}} \right\} = }\\ {2{\mathscr{F}}\{ \mathit{\boldsymbol{O}}\} \cdot {G_{{\mathit{\boldsymbol{d}}_2}}} + 2{\mathscr{F}}\left\{ {{\mathit{\boldsymbol{O}}^*}} \right\} \cdot {G_{ - {\mathit{\boldsymbol{d}}_2}}}} \end{array} $
(8) 由(7)式×G-d1-(6)式×G-d2可解出待测物体物光波O(x0, y0)的频谱分布, 如下式所示:
$ \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\mathscr{F}}\left\{ \mathit{\boldsymbol{O}} \right\} = \\ \frac{{{\mathscr{F}}\left\{ {{\mathit{\boldsymbol{A}}_{21}} - {\mathit{\boldsymbol{A}}_{22}}} \right\} \cdot {\mathit{\boldsymbol{G}}_{ - {\mathit{\boldsymbol{d}}_1}}} - {\mathscr{F}}\left\{ {{\mathit{\boldsymbol{A}}_{11}} - {\mathit{\boldsymbol{A}}_{12}}} \right\} \cdot {\mathit{\boldsymbol{G}}_{ - {\mathit{\boldsymbol{d}}_2}}}}}{{2\left( {{\mathit{\boldsymbol{G}}_{{\mathit{\boldsymbol{d}}_2} - {\mathit{\boldsymbol{d}}_1}}} - {\mathit{\boldsymbol{G}}_{{\mathit{\boldsymbol{d}}_1} - {\mathit{\boldsymbol{d}}_2}}}} \right)}} \end{array} $
(9) 式中, G-d1, G-d2, Gd1-d2和Gd2-d1分别为在距离-d1, -d2, d1-d2和d2-d1的自由空间传递函数。对(9)式进行逆傅里叶变换, 可以解出待测物体物光波O(x0, y0)的复振幅。这种方法不仅有着和传统四步相移相同的相位重建效果,而且只用了一半的时间。与传统相移算法类似[16-19],通过上述方法解出的复振幅分布仍然是包裹的[20],作者使用最小二乘法对包裹的复振幅分布进行解包裹,就可得到物光波的真实相位分布。
一种两步相移数字全息的设计与实验验证
Design and verification of two-step phase-shifted digital holography
-
摘要: 为了快速有效地测量微小透明物体表面形貌,设计了一种基于Mach-Zehnder干涉仪的两步相移数字全息系统。该系统使用两个相同的CCD在不同距离同时采集干涉图像,利用光学相移单元在每个CCD记录的干涉图之间形成一个π的相移,然后通过光的空间传递函数及傅里叶变换给出了相位重建的算法。搭建了两步相移干涉光路,以微透镜阵列作为待测物体,验证了该系统的可行性。结果表明,该系统比四步相移法节省一半以上的时间,且能够达到与四步相移法相一致的相位重建结果。该方法对提高相位重建效率具有一定的帮助。Abstract: In order to measure the surface topography of micro transparent objects quickly and effectively, a two-step phase-shifted digital holography system based on Mach-Zehnder interferometer was designed. The system used two identical CCDs to collect interferometric images at different distances at the same time. An optical phase shifting unit was used to form a π phase shift between the interferograms recorded by each CCD. Then the phase reconstruction algorithm was given by the space transfer function and Fourier transform of light. A two-step phase-shifted interferometric optical path was constructed. The microlens array was used as the object to be measured. The feasibility of the system was verified. The results show that, the system saves more than half of the time compared with the four-step phase-shifting method. It can achieve the phase reconstruction results consistent with the four-step phase-shifting method. This method is helpful to improve the efficiency of phase reconstruction.
-
Key words:
- holography /
- digital holography /
- phase shifting method /
- Fourier optics /
- phase reconstruction
-
Figure 5. Interference images collected by CCD a, b—residual phase images collected by CCD1 when the phase shift is 0 and π c, d—residual phase images collected by CCD2 when the phase shift is 0 and π e, f—the interferograms collected by CCD1 when the phase shift is 0 and π g, h—the interferograms collected by CCD2 when the phase shift is 0 and π
-
[1] REN Zh, FAN Z B, LI J Ch, et al. Precision measurement of mini-rotating-angles based on digital holography and its application.Laser Technology, 2012, 36(6):798-801(in Chinese). [2] HAO B, SHAN M, ZHONG Z, et al. Common-path interferometer with four simultaneous phase-shifted interferograms using ronchi gra-ting and cube beamsplitter. Optics and Lasers in Engineering, 2013, 51(11):1278-1282. doi: 10.1016/j.optlaseng.2013.05.005 [3] DONG K P, QIAN X F, ZHANG L, et al. Digital holographic microscopy study for cells. Acta Photonica Sinica, 2007, 36(11):2013-2016(in Chinese). [4] VESPINI V, COPPOLA S, TODINO M, et al. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab on a Chip, 2016, 16(2):326-333. doi: 10.1039/C5LC01386K [5] CAI H Y, LI G Y, HUANG Zh H. Microsurface profile measurement system based on two-step phase-shifting interference. Laser Technology, 2016, 40(1):20-24(in Chinese). [6] ZHANG S Q, ZHOU J Y. A new estimation method for two-step-only quadrature phase-shifting digital holography. Optics Communications, 2015, 335(1):183-188. [7] HUANG P S, ZHANG S. Fast three-step phase-shifting algorithm. Applied Optics, 2006, 45(21):5086-5091. doi: 10.1364/AO.45.005086 [8] WANG H J, WANG Zh, ZHAO H, et al. Research on effects of phase error in phase- shifting interferometer.Proceedings of the SPIE, 2007, 6723:67233W. [9] CHEN B X, TIAN Y Zh, ZHAO N N, et al. Optimization of two-step phase-shifting digital hologram algorithm and experimental verification. Laser & Optoelectronics Progress, 2015, 52(8):080903(in Chinese). [10] DENG L J, YANG Y, SHI B Ch, et al. Two-step phase-shifting digital holography based on extraction of phase shift. Chinese Journal of Lasers, 2014, 41(2):0209014(in Chinese). doi: 10.3788/CJL201441.0209014 [11] MENG X F, CAI L Z, XU X F, et al. Two-step phase-shifting interferometry and its application in image encryption. Optics Le-tters, 2006, 31(10):1414-1416. doi: 10.1364/OL.31.001414 [12] SONG X F, YU M J, WANG H Y, et al. Effect of reference intensity ratio to object on reconstructed image quality in digital holograhpy. Laser Technology, 2014, 38(6):859-862(in Chinese). [13] LIU J P, POON T C. Two-step-only quadrature phase-shifting digital holography. Optics Letters, 2009, 34(3): 250-252. doi: 10.1364/OL.34.000250 [14] LIU J P, POON T C, JHOU G S, et al. Comparison of two-, three-, and four- exposure quadrature phase- shifting holography. Applied Optics, 2011, 50(16): 2443-2450. doi: 10.1364/AO.50.002443 [15] QIN Y, GONG Q, YANG X Q. A method for accurate phase shift in two-step phase-shifting digital holography. Acta Photonica Sinica, 2011, 40(8): 1282-1286(in Chinese). doi: 10.3788/gzxb20114008.1282 [16] YAMAGUCHI I, ZHANG T. Phase-shifting digital holography. Optics Letters, 1997, 22(16): 1268-1270. doi: 10.1364/OL.22.001268 [17] ABDELSALAM D, YAO G, GAO B L, et al. Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry. A-pplied Optics, 2012, 51(20):4891-4895. [18] HAN J H, YAO B L, GAO P, et al. Application of bacteriorhodopsin film for polarization phase-shifting interferometry. Journal of Modern Optics, 2008, 55(14): 2215-2222. doi: 10.1080/09500340802082350 [19] FERRARI J A, GARBUSI E, FRINS E M. Phase modulation by polarization recording in bacteriorhodopsin: Application to phase-shifting interferometry. Optics Letters, 2004, 29(10): 1138-1140. doi: 10.1364/OL.29.001138 [20] ITOH K. Analysis of the phase unwrapping algorithm. Applied Optics, 1982, 21(14): 2470. doi: 10.1364/AO.21.002470