锑化物Ⅱ类超晶格中远红外探测器的研究进展
Research progress on antimonide based type-Ⅱ superlattice mid- and long-infrared detectors
-
摘要: 基于锑化物Ⅱ类超晶格结构的中远红外探测器,由于其优异的性能而受到广泛的关注和研究。综述了锑化物Ⅱ类超晶格中远红外探测器的探测机理、材料结构、器件性能和当前的应用情况,介绍了其在中远红外雪崩光电探测器领域的研究现状。锑化物Ⅱ类超晶格探测器的部分性能指标已接近、甚至超过了碲镉汞探测器,并在部分红外装备上得到了应用。而基于锑化物Ⅱ类超晶格的雪崩光电探测器件在中远红外弱光探测领域尚处于起步阶段,与碲镉汞探测器相比还有很大差距,但同时也呈现出了巨大的发展潜力。Abstract: Mid- and long-infrared detector based on antimonide type-Ⅱ superlattice has drawn extensive attention and research due to its excellent performance. The detection mechanism, material structure, device performance and current application of antimonide type-Ⅱ superlattice detectors are reviewed. Additionally, the research progress of type-Ⅱ superlattice in mid- and long-infrared avalanche photodiodes is also introduced. Some indicators of the antimonide type-Ⅱ superlattice detectors have approached, or even exceeded those of the HgCdTe detectors. Such superlattice detectors have been applied in some infrared equipment. Avalanche photodetectors based on antimonide type-Ⅱ superlattice are still in their infancy in the field of mid- and long-infrared week light detection. On the other hand, they show great development potential when compared with HgCdTe avalanche detectors.
-
Key words:
- detectors /
- antimonide /
- type-Ⅱ superlattice /
- mid- and long-infrared /
- avalanche photodiodes
-
图 1 锑化物及常见半导体材料的晶格常数和禁带宽度[3]
图 2 6.1Å Ⅲ-Ⅴ族半导体材料能带结构示意图(0K)[5]
图 3 InAs/GaSb禁带错开型T2SL能带结构示意图[7]
图 4 锑化物T2SL和HgCdTe探测器的探测率对比[9]
图 5 美国西北大学在GaAs衬底上制备的320×256阵列规模的锑化物T2SL焦平面探测器成像效果图[26]
a—M结构中红外探测器 b—PMP结构远红外探测器
图 6 中国科学院半导体所制备的320×256阵列规模的M结构超远红外锑化物T2SL焦平面探测器成像图[27]
图 7 美国西北大学制备的基于NBN结构的向短波红外扩展响应的320×256阵列规模的锑化物T2SL焦平面探测器在不同工作温度下的成像效果图[28]
a—100K b—200K c—300K
图 8 美国林肯实验室制备的32×32锑化物APD焦平面探测器[33]
图 9 32×32锑化物APD焦平面探测器在盖革模式下的3维成像图[33]
-
[1] LI Y B, LIU Ch, ZHAN Y, et al. Research progress in Sb-based superlattice infrared detectors[J]. Research & Progress of SSE, 2010, 30(1):11-17(in Chinese). [2] WANG G W, XU Y Q, NIU Zh Ch. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Cha-llenges and solutions[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(4):368-389(in Chinese). [3] ROGALSKI A. Material considerations for third generation infrared photon detectors[J]. Infrared Physics & Technology, 2007, 50(2/3):240-252. [4] LIU Ch, ZENG Y P. Application research and development in Sb-based Ⅲ-Ⅴ compound semiconductor material and device[J]. Semiconductor Technology, 2009, 34(6):525-530(in Chinese). [5] BENNETT B R, MAGNO R, BOOS J B, et al. Antimonide-based compound semiconductors for electronic devices: A review[J]. Solid-State Electronics, 2005, 49(12):1875-1895. doi: 10.1016/j.sse.2005.09.008 [6] SAI-HALASZ G A, ESAKI L, HARRISON W A. InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition[J]. Physical Review, 1978, B18(6):2812-2818. doi: 10.1103/PhysRevB.18.2812 [7] ELENA A P. InAs/GaSb type-Ⅱ superlattice detectors[J]. Advances in Electronics, 2014, 2014:246769. doi: 10.1155/2014/246769 [8] SHI Y L. Type-Ⅱ InAs/GaInSb superlattices infrared detectors-one of the best choices as the third generation infrared detectors[J]. Infrared Technology, 2011, 33(11): 621-624(in Chinese). [9] ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9):091101-091144. doi: 10.1063/1.3099572 [10] SONG Sh F, GONG F, ZHOU L Q. Progress of InAs/GaSb type Ⅱ super-lattice infrared detector[J]. Laser & Infrared, 2014, 44(2): 117-121(in Chinese). [11] NGUYEN B M, HOFFMAN D, WEI Y, et al. Very high quantum efficiency in type-Ⅱ InAs/GaSb superlattice photodiode with cutoff of 12μm[J]. Applied Physics Letters, 2007, 90(23):2318. [12] WALTHER M, REHM R, SCHMITZ J, et al. InAs/GaSb type Ⅱ superlattices for advanced 2nd and 3rd generation detectors[J]. Proceedings of the SPIE, 2010, 7608: 76081Z. doi: 10.1117/12.842065 [13] AIFER E H, TISCHLER J G, WARNER J H, et al. W-structured type-Ⅱ superlattice long-wave infrared photodiodes with high quantum efficiency[J]. Applied Physics Letters, 2006, 89(5):53519. doi: 10.1063/1.2335509 [14] VURGAFTMAN I, AIFER E H, CANEDY C L, et al. Graded band gap for dark-current suppression in long-wave infrared W-structured type-Ⅱ superlattice photodiodes[J]. Applied Physics Letters, 2006, 89(12):121114. doi: 10.1063/1.2356697 [15] NGUYEN B M, RAZEGHI M, NATHAN V, et al. Type-Ⅱ M structure photodiodes: An alternative material design for mid-wave to long wavelength infrared regimes[J]. Proceedings of the SPIE, 2007, 6479:64790S. doi: 10.1117/12.711588 [16] NGUYEN B, HOFFMAN D, DELAUNAY P, et al. Dark current suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier[J]. Applied Physics Le-tters, 2007, 91(16):163511. doi: 10.1063/1.2800808 [17] NGUYEN B M, HOFFMAN D, DELAUNAY P Y, et al. Band edge tunability of M-structure for heterojunction design in Sb based type Ⅱ superlattice photodiodes[J]. Applied Physics Letters, 2008, 93(16):163502. doi: 10.1063/1.3005196 [18] HOFFMAN D, NGUYEN B M, HUANG K W, et al. The effect of doping the M-barrier in very long-wave type-Ⅱ InAs/GaSb heterodiodes[J]. Applied Physics Letters, 2008, 93(3):031107. doi: 10.1063/1.2963980 [19] DELAUNAY P Y, RAZEGHI M. High-performance focal plane a-rray based on type-Ⅱ InAs/GaSb superlattice heterostructures[J]. Proceedings of the SPIE, 2008, 6900:69000M. doi: 10.1117/12.776257 [20] TING Z Y, HILL C J, SOIBEL A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2):023508. doi: 10.1063/1.3177333 [21] GAUTAM N, KIM H S, KUTTY M N, et al. Performance improvement of longwave infrared photodetector based on type-Ⅱ InAs/GaSb superlattices using unipolar current blocking layers[J]. Applied Physics Letters, 2010, 96(23):231107. doi: 10.1063/1.3446967 [22] RODRIGUEZ J B, PLIS E, BISHOP G, et al. nBn structure based on InAs/GaSb type-Ⅱ strained layer superlattices[J]. Applied Physics Letters, 2007, 91(4):39-41. [23] NGUYEN B, BOGDANOV S, POUR S A, et al. Minority electron unipolar photodetectors based on type Ⅱ InAs/GaSb/AlSb superla-ttices for very long wavelength infrared detection[J]. Proceedings of the SPIE, 2009, 7608:760825. [24] KHOSHAKHLAGH A, MYERS S, KIM H S, et al. Long-wave InAs/GaSb superlattice detectors based on nBn and pin designs[J]. IEEE Journal of Quantum Electronics, 2010, 46(6):959-964. doi: 10.1109/JQE.2010.2041635 [25] MARTYNIUK P, WRÓBEL J, PLIS E, et al. Modeling of midwavelength infrared InAs/GaSb type Ⅱ superlattice detectors[J]. Optical Engineering, 2013, 52(6):061307. doi: 10.1117/1.OE.52.6.061307 [26] RAZEGHI M, HUANG K W, NGUYEN B M, et al. Type-Ⅱ antimonide-based superlattices for the third generation infrared focal plane arrays[J]. Proceedings of the SPIE, 2010, 7660:76601F. [27] HAN X, XIANG W, HAO H Y, et al. Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-Ⅱ InAs/GaSb superlattice[J]. Chinese Physics, 2017, B26(1):018505. [28] ARASH D, ABBAS H, ROMAIN C, et al. NBN extended short-wavelength infrared focal plane array[J]. Optics Letters, 2018, 43(3):591-594. doi: 10.1364/OL.43.000591 [29] LI Y, XIAO W L, WU L Y, et al. Dark current characteristic of p-i-n and nBn MWIR InAs/GaSb superlattice infrared detectors[C]//IEEE Optoelectronics Global Conference. New York, USA: IEEE, 2019: 70-75. [30] MIURA S, MIKAWA T, KUWATSUKA H, et al. AlGaSb avalanche photodiode exhibiting a very low excess noise factor[J]. A-pplied Physics Letters, 1989, 54(24):2422-2423. doi: 10.1063/1.101095 [31] DUERR E K, MANFRA M J, DIAGNE M A, et al. Antimonide-based geiger-mode avalanche photodiodes at 2μm wavelength[J]. Applied Physics Letters, 2007, 91(23): 231115. doi: 10.1063/1.2822447 [32] DUERR E K, MANFRA M J, BAILEY R J, et al. Geiger-mode operation of antimonide-based avalanche photodiodes in the mid-wave infrared[C]// IEEE Lasers & Electro-optics Society: Leos Meeting. New York, USA: IEEE, 2008: 232-233. [33] DUERR E K, MANFRA M J, DIAGNE M A, et al. Antimonide-based Geiger-mode avalanche photodiodes for SWIR and MWIR photon counting[J]. Proceedings of the SPIE, 2010, 7681:76810Q. doi: 10.1117/12.851006 [34] MALLICK S, BANERJEE K, GHOSH S, et al. Midwavelength infrared avalanche photodiode using InAs/GaSb strain layer superla-ttice[J]. IEEE Photonics Technology Letters, 2007, 19(22):1843-1845. doi: 10.1109/LPT.2007.908726 [35] MALLICK S, BANERJEE K, GHOSH S, et al. Ultralow noise midwave infrared InAs-GaSb strain layer superlattice avalanche photo-diode[J]. Applied Physics Letters, 2007, 91(24):241111. [36] BANERJEE K, GHOSH S, MALLICK S, et al. Midwave infrared InAs/GaSb strained layer superlattice hole avalanche photodiode[J]. Applied Physics Letters, 2009, 94(20):201107. doi: 10.1063/1.3139012 [37] DANIEL S G O, JO S N. InAlAs avalanche photodiode with type-Ⅱ superlattice absorber for detection beyond 2μm[J]. IEEE Transactions on Electron Devices, 2011, 58(2):486-489. doi: 10.1109/TED.2010.2090352 [38] HUANG J, BANERJEE K, GHOSH S, et al. Dual-carrier high-gain low-noise superlattice avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 2013, 60(7):2296-2301. doi: 10.1109/TED.2013.2264315