-
电控矢量涡旋光的偏振测试装置如图 1所示。激光器(Sapphire SF 532nm, Coherent)生成532nm的单纵模激光,通过衰减器衰减后经空间滤波器滤波,半波片(half-wave-plate, HWP)旋转激光线偏振态到所需方向上,经电控可变延迟波片(Thorlabs)对入射光进行偏振和相位调控,再经过q波片(Aroptix),生成矢量光场,电控的矢量涡旋光通过λ/4波片(quarter-wave-plate, QWP)、偏振片和电荷耦合器(charge-coupled device, CCD)组成的全斯托克斯偏振测试端进行测试分析。
Figure 1. Generation of electrically controlled vector vortex beam and measurement of the Stokes parameters
实验中使用一个电控可变相位延迟波片,通过沿x轴产生$\frac{+\varphi_{\mathrm{\mathrm{v}}}}{2} $的相移和沿y轴产生$\frac{-\varphi_{\mathrm{v}}}{2} $的相移,在入射光场的正交分量之间引入一个φv的相移,其Mueller矩阵为:
$ \boldsymbol{M}\left(\varphi_{\mathrm{\mathrm{v}}}\right)=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \varphi_{\mathrm{\mathrm{v}}} & -\sin \varphi_{\mathrm{\mathrm{v}}} \\ 0 & 0 & \sin \varphi_{\mathrm{\mathrm{v}}} & \cos \varphi_{\mathrm{\mathrm{v}}} \end{array}\right] $
(1) 半波片作为偏振旋转器,用于改变偏振的方向角,旋转角为θ1的半波片的Mueller矩阵为:
$ \boldsymbol{M}\left(2 \theta_{1}\right)=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \left(2 \theta_{1}\right) & \sin \left(2 \theta_{1}\right) & 0 \\ 0 & -\sin \left(2 \theta_{1}\right) & \cos \left(2 \theta_{1}\right) & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] $
(2) 根据(1)式和(2)式,实验中电控液晶可变半波延迟器的Mueller矩阵为:
$ \boldsymbol{M}\left(\varphi_{\mathrm{v}}, 2 \theta_{1}\right)=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos ^{2}\left(2 \theta_{1}\right)+\cos \varphi_{\mathrm{v}} \sin ^{2}\left(2 \theta_{1}\right) & \left(1-\cos \varphi_{\mathrm{v}}\right) \sin \left(2 \theta_{1}\right) \cos \left(2 \theta_{1}\right) & \sin \varphi_{\mathrm{v}} \sin \left(2 \theta_{1}\right) \\ 0 & \left(1-\cos \varphi_{\mathrm{v}}\right) \sin \left(2 \theta_{1}\right) \cos \left(2 \theta_{1}\right) & \sin ^{2}\left(2 \theta_{1}\right)+\cos \varphi_{\mathrm{v}} \cos ^{2}\left(2 \theta_{1}\right) & -\sin \varphi_{\mathrm{v}} \cos \left(2 \theta_{1}\right) \\ 0 & -\sin \varphi_{\mathrm{v}} \sin \left(2 \theta_{1}\right) & \sin \varphi_{\mathrm{v}} \cos \left(2 \theta_{1}\right) & \cos \varphi_{\mathrm{v}} \end{array}\right] $
(3) 为使线偏振实现明显的偏转及有效转换圆偏振,方便对于实验偏振测量结果的对比参考,实验中选择固定了液晶可变延迟器的光轴在45°,可得:
$ \boldsymbol{M}\left(\varphi_\rm{v}, 90^{\circ}\right)=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi_\rm{v} & 0 & \sin \varphi_\rm{v} \\ 0 & 0 & 1 & 0 \\ 0 & -\sin \varphi_\rm{v} & 0 & \cos \varphi_\rm{v} \end{array}\right] $
(4) 假设相位延迟φv=π时,θ1=45°代表光轴旋转了45°的半波片:
$ \boldsymbol{M}\left(\rm{\pi }, 90^{\circ}\right)=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right] $
(5) 此外已调谐的q波片(φ=π, φ表示q波片的相位延迟)的Mueller矩阵为:
$ \boldsymbol{M}_{q}=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \left(2 \theta_{2}\right) & \sin \left(2 \theta_{2}\right) & 0 \\ 0 & \sin \left(2 \theta_{2}\right) & -\cos \left(2 \theta_{2}\right) & 0 \\ 0 & 0 & 0 & -1 \end{array}\right] $
(6) 式中,θ2是q波片液晶单元的旋转角。设光源Sin= 1 -1 0 0]T,输出光的矩阵分析如下:
$ \begin{array}{c} \boldsymbol{S}_{\text {out }}=\boldsymbol{M}_{q} \cdot \boldsymbol{M}\left(\varphi_{\mathrm{v}}, 90^{\circ}\right) \cdot \boldsymbol{S}_{\mathrm{in}}= \\ {\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \left(2 \theta_{2}\right) & \sin \left(2 \theta_{2}\right) & 0 \\ 0 & \sin \left(2 \theta_{2}\right) & -\cos \left(2 \theta_{2}\right) & 0 \\ 0 & 0 & 0 & -1 \end{array}\right] .} \\ {\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi_{\mathrm{v}} & 0 & \sin \varphi_{\mathrm{v}} \\ 0 & 0 & 1 & 0 \\ 0 & -\sin \varphi_{\mathrm{v}} & 0 & \cos \varphi_{\mathrm{v}} \end{array}\right] \cdot\left[\begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \end{array}\right]} \end{array} $
(7) 即:
$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{S}}_{{\rm{out }}}} = }\\ {{{\left[ {\begin{array}{*{20}{l}} {(1}&{ - \cos \left( {2{\theta _2}} \right)\cos {\varphi _{\rm{v}}}}&{ - \sin \left( {2{\theta _2}} \right)\cos {\varphi _{\rm{v}}}}&{ - \sin {\varphi _{\rm{v}}}} \end{array}} \right]}^{\rm{T}}}} \end{array} $
(8) 从(8)式可以看出,输出光场是由LCVR的电光相位延迟φv和q波片液晶单元旋转角θ2共同确定的矢量光场。
-
实验中使用LCC25控制器对LCVR进行调制。未施加电压时,液晶延迟器的慢轴对应液晶分子的长轴取向; 加上电压后,液晶分子的取向旋转,改变延迟量。实验开始之前,为了获知LCVR不同控制电压产生的相位延迟,采用索累-巴比涅(Soleil-Barbinet)补偿器,在23℃室温下,使用532nm单模激光器与633nm激光器对LCVR进行0V~4V控制电压的相位延迟的测量,得到延迟器的相位延迟与输入电压关系,纵坐标为相位延迟(Δnd为光程差,λ为波长, n为折射率,d为光在介质内传播的距离),如图 2所示。
Figure 2. Relation curve between the input voltage and the delay property of an electrically controlled LCVR based on a Soleil-Barbinet compensator
实验中通过全斯托克斯参数测试方法对矢量光场偏振信息进行获取。在CCD前增加λ/4波片和线偏振片,其中偏振片透光轴、波片快轴方向的方位角分别为α和β,设I(α, β)为不同方位角下CCD探测的光强分布,则4个斯托克斯参量为:
$ \left\{\begin{array}{l} S_{0}=I\left(0^{\circ}, 0^{\circ}\right)+I\left(90^{\circ}, 90^{\circ}\right) \\ S_{1}=I\left(0^{\circ}, 0^{\circ}\right)-I\left(90^{\circ}, 90^{\circ}\right) \\ S_{2}=I\left(45^{\circ}, 45^{\circ}\right)-I\left(-45^{\circ}, -45^{\circ}\right) \\ S_{3}=I\left(0^{\circ}, 45^{\circ}\right)-I\left(0^{\circ}, -45^{\circ}\right) \end{array}\right. $
(9) 式中,I(0°, 0°),I(90°, 90°)为CCD测得矢量场的水平和垂直偏振态分量的光强; I(45°, 45°), I(-45°, -45°)分别为对角线偏振态和反对角线偏振态的强度; I(0°, 45°); I(0°, -45°)分别为右旋和左旋圆偏振态的强度,通过4个斯托克斯参量,可获得出输出光场的光强和偏振态分布。
电控矢量涡旋光的偏振测试研究
Polarization measurement of electronically controlled vector vortex light
-
摘要: 为了研究电控相位延迟对矢量涡旋光偏振态的影响规律, 采用半波液晶可变延迟器和液晶q波片搭建了电控矢量涡旋光的全斯托克斯偏振测试实验装置, 进行了电控矢量涡旋光的斯托克斯参量传输特性的Muller矩阵分析和实验验证。通过对输入偏振光进行连续相位调控, 获得了其通过调谐q波片后的输出光束偏振态演变规律。结果表明, 电控相位延迟会改变角向和径向偏振光的局域偏振椭偏度, 且随电压变化呈线性关系, 同时偏振态演变会影响矢量涡旋光的输出光强。此研究对于探索电控矢量涡旋光的偏振转换有着重要的意义。Abstract: In order to study the influence of electrically controlled phase delay on the polarization state of vector vortices, a full Stokes polarization measurement for electrically controlled polarization vortexing was built by using a liquid crystal variable retarder and a liquid crystal q wave-plate. Muller matrix analysis and experimental verification of Stokes parameter transmission characteristics of electronically controlled vector vortices were presented. By continuous phase control of the input polarized light, the polarization regulation evolution of the output light beam was obtained after it passes through the tuned q wave-plate. The results show that the electrically controlled phase delay can change the ellipsicity of the local polarization of the angular and radial polarized light, and the change of the polarization state can affect the output intensity of the vector vortex light. The research is of great significance to the exploration of polarization conversion of electrically controlled vector vortices.
-
Key words:
- physics optics /
- polarization /
- vectorial field /
- Stokes parameters /
- liquid crystal variable retarders /
- q wave-plate
-
-
[1] ZHAN Q W. Cylindrical vector beams: From mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi: 10.1364/AOP.1.000001 [2] ROSALES-GUZMAN C, NDAGANO B, FORBES A, et al. A review of complex vector light fields and their applications[J]. Journal of Optics (United Kingdom), 2018, 20(12): 123001. [3] WANG X L, DING J P, NI W J, et al. Generation of arbitrary vector beams with a spatial light modulator[J]. Optics Letters, 32(24): 3549-3551. doi: 10.1364/OL.32.003549 [4] MAURER C, JESACHER A, FÜRHAPTER S, et al. Tailoring of arbitrary optical vector beams[J]. New Journal of Physics, 2007, 9(3): 78. doi: 10.1088/1367-2630/9/3/078 [5] LIU J Q, WANG J M, HE Ch J, et al. Research on the generation of Ince-Gaussian vector optical field[J]. Acta Optica Sinica, 2019, 39(8): 0826001(in Chinese). doi: 10.3788/AOS201939.0826001 [6] HAN W, YANG Y F, CHENG W, et al. Vectorial optical field ge-nerator for the creation of arbitrarily complex fields[J]. Optics Express, 2013, 21(18): 20692-20706. doi: 10.1364/OE.21.020692 [7] BIENER G, NIV A, KLEINER V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Le-tters, 2002, 27(21): 1875-1877. doi: 10.1364/OL.27.001875 [8] MARRUCCI L, MANZO C, PAPARO D, et al. Pancharatnam-Berry phase optical elements for wavefront shaping in the visible domain: Switchable helical modes generation[J]. Applied Physics Letters, 2006, 88(22): 221102. doi: 10.1063/1.2207993 [9] BOUCHARD F, MAND H, MIRHOSSEINI M, et al. Achromatic orbital angular momentum generator[J]. New Journal of Physics, 2014, 16(12): 123006. doi: 10.1088/1367-2630/16/12/123006 [10] DEVLIN R C, AMBROSIO A, RUBIN N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-900. doi: 10.1126/science.aao5392 [11] KONG F Q, ZHANG CH M, BOUCHARD F, et al. Controlling the orbital angular momentum of high harmonic vortices[J]. Nature Communications, 2017, 8(10): 14970. [12] ANDREA R, FILIPPO C, BRUNO P, et al. Q-plate technology: A progress review[Invited][J]. Journal of the Optical Society of America, 2019, B36(5): 70-87. [13] BOMZON Z, BIENER G, KLEINER V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. doi: 10.1364/OL.27.001141 [14] BOMZON Z, BIENER G, KLEINER V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters, 2002, 27(5): 285-287. doi: 10.1364/OL.27.000285 [15] PAPARO D, MANZO C, MARRUCCI L, et al. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905 [16] SLUSSARENKO S, MURAUSKI A, TAO D, et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 2011, 19(5): 4085-4090. doi: 10.1364/OE.19.004085 [17] CARDANO F, KARIMI E, SLUSSARENKO S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges[J]. Applied Optics, 2012, 51(10): C1-C6. doi: 10.1364/AO.51.0000C1 [18] DARRYL N, FILIPPUS S R, ANGELA D, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10(5): 327-332. doi: 10.1038/nphoton.2016.37 [19] ZHANG Y J, GAO Sh H, SONG X, et al. Preparation and characteristics of large aperture liquid crystal q wave-plates[J]. Laser Technology, 2019, 43(4): 442-447(in Chinese). [20] JIANG J J, ZHANG D Y, LI J F, et al. Liquid crystal variable retarder development and electric-control retardation measurement[J]. Laser Technology, 2011, 35(5): 652-655(in Chinese). [21] LI K W, WANG ZH B, YANG CH Q, et al. A new technique of full polarization hyperspectral imaging based on acousto-optic tunable filter and liquid crystal variable retarder[J]. Acta Physica Sinica, 2015, 64(14): 140702(in Chinese). doi: 10.7498/aps.64.140702 [22] XU C, MA J, KE C, et al. Full-Stokes polarization imaging based on liquid crystal variable retarders and metallic nanograting arrays[J]. Journal of Physics, 2019, D53(1): 015112.