高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率激光作用下光学元件非线性热效应研究

王天明 李斌成 赵斌兴 孙启明

引用本文:
Citation:

高功率激光作用下光学元件非线性热效应研究

    作者简介: 王天明(1995-), 男, 硕士研究生, 现主要从事光热检测技术相关的研究.
    通讯作者: 李斌成, bcli@uestc.edu.cn
  • 基金项目:

    国家自然科学基金NSAF联合基金资助项目 U1830132

  • 中图分类号: O437

Nonlinear thermal effects of optical components irradiated by high-power laser beam

    Corresponding author: LI Bincheng, bcli@uestc.edu.cn ;
  • CLC number: O437

  • 摘要: 为了研究高功率激光作用下光学元件热效应的非线性特性对光束质量的影响, 基于热传导、热弹性力学、物理光学等基础理论, 采用有限元分析方法, 进行了高功率连续激光(功率密度约为500kW/cm2)作用下光学元件的温度场和位移场的计算; 分析对比了各个参数的非线性特性对光学元件热效应的影响; 探讨了不同材料、不同形状光斑辐照下的光学元件非线性热效应。结果表明, 高功率连续激光作用下光学元件所反映出的热学、力学和光学吸收存在着不同程度的非线性效应, 其强弱取决于光学元件材料、光斑形状等因素; 高斯激光辐照熔石英样品且吸收率为100×10-6时, 考虑物性参数和温度边界条件的非线性, 会引起表面最大温升16%的相对误差和表面变形峰谷值10%的相对误差。这一结果为开展与此相关的研究提供了一些新思路。
  • Figure 1.  Temperature dependences of physical parameters of a typical fused silica sample

    Figure 2.  Comparison of calculation results of fused quartz samples irradiated by Gaussian laser, with and without the nonlinearity of physical parameters and temperature boundary conditions

    Figure 3.  Comparison of calculation results of fused quartz sample irradiated by Gaussian laser, with and without the nonlinearity of absorption

    Figure 4.  Variation of temperature rise and thermal deformation of the fused quartz sample center

    Figure 5.  Comparison of calculation results of silicon sample irradiated by Gaussion laser, with and without the nonlinearity of physical parameters and temperature boundary conditions

    Figure 6.  Comparison of calculation results of silicon sample irradiated by Gaussion laser, with and without the nonlinearity of absorption

    Figure 7.  Comparison of calculation results of fused quartz sample irradiated by flat top ring laser, with and without the nonlinearity of physical parameters and temperature boundary conditions

    Figure 8.  Comparison of calculation results of fused quartz sample irradiated by flat top ring laser, with and without the absorption nonlinearity

  • [1]

    CAMPBELL J H, HAWLEY-FEDDER R A, STOLZ C J, et al. NIF optical materials and fabrication technologies: An overview[C]//Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ: The National Ignition Facility. San Jose, USA: International Society for Optics and Photonics, 2004: 84-101.
    [2]

    LIU W G, RAO P, HUA W H. Effects of thermal distortion of Si mirror irradiated by non-uniformity laser intensity on laser propagation[J]. High Power Laser and Particle Beams, 2008, 20(10): 1615-1619 (in Chinese).
    [3]

    HU P, ZHANG J Zh. Analysis of spatio-temporal characters of thermal effects of optical components in laser system[J]. Acta Optica Sinica, 2020, 40(20): 2014001(in Chinese). doi: 10.3788/AOS202040.2014001
    [4]

    PEÑANO J, SPRANGLE P, TING A, et al. Optical quality of high-power laser beams in lenses[J]. Journal of the Optical Society of America, 2009, B26(3): 503-510.
    [5]

    PENG Y F, CHENG Z H. Finite element analyses of thermal distortions of mirror substrates for high power laser[J]. High Power Laser and Particle Beams, 2005, 17(1): 5-8(in Chinese).
    [6]

    ZHANG X M, HU D X, XU D P, et al. Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201002(in Chinese). doi: 10.3788/CJL202148.1201002
    [7]

    LOU Zh K. Study on the damage mechanism of optical elements used in high energy laser system[D]. Changsha: National University of Defense Technology, 2017: 1-35 (in Chinese).
    [8]

    DRAGGOO V G, MORTON R G, SAWICKI R H, et al. Optical coating absorption measurement for high power laser systems[J]. Proceedings of the SPIE, 1986, 622: 186-190. doi: 10.1117/12.961185
    [9]

    CHOW R, TAYLOR J R, WU Zh L. Absorptance behavior of optical coatings for high-average-power laser applications[J]. Applied Optics, 2000, 39(4): 650-658. doi: 10.1364/AO.39.000650
    [10]

    ISIDRO-OJEDA M A, ALVARADO-GIL J J, ZANUTO V S, et al. Laser induced wave-front distortion in thick-disk material: An analytical description[J]. Optical Materials, 2018, 75(1): 574-579.
    [11]

    WANGY Y R, LI B Ch, LIU M Q. Laser-induced temperature distributions in finite radial-size optical mirror[J]. High Power Laser and Particle Beams, 2010, 22(2): 335-340 (in Chinese). doi: 10.3788/HPLPB20102202.0335
    [12]

    LIU M Q, LI B Ch. Analysis of temperature and deformation fields in an optical coating sample[J]. Acta Physica Sinica, 2008, 57(6): 3402-3409 (in Chinese). doi: 10.7498/aps.57.3402
    [13]

    ZHANG J Y, CHEN F, MA J, et al. Thermal deformation of fused silica substrates and its influence on beam quality[J]. Laser Technology, 2019, 43(3): 374-379 (in Chinese).
    [14]

    YANG F, HUANG W, ZHANG B, et al. Temperature field distribution and thermal distortion of thin film coatings irradiated by CO2 laser[J]. Laser Technology, 2004, 28(3): 255-258 (in Chinese).
    [15]

    LI L, SHI P, LI D L, et al. Thermal effect research of the output-coupler window in high power CO2 laser[J]. Laser Technology, 2004, 28(5): 510-513 (in Chinese).
    [16]

    HU H P. Theory of heat conduction[M]. Hefei: University of Science and Technology of China Press, 2010: 250-260 (in Chinese).
    [17]

    COELHO J M P, NESPEREIRA M, ABREU M, et al. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation[J]. Sensors, 2013, 13(8): 10333-10347. doi: 10.3390/s130810333
    [18]

    FANDERLIK I. Silica glass and its application (glass science and technology, volume 11) [M]. New York, USA: Elsevier, 1991: 213-230.
    [19]

    McLACHLAN A D, MEYER F P. Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths[J]. Applied Optics, 1987, 26(9): 1728-1731. doi: 10.1364/AO.26.001728
    [20]

    ZHU Z M. Physical optics[M]. Wuhan: Huazhong University of Science and Technology Press, 2009: 31-32 (in Chinese).
    [21]

    BORN M, WOLF E. Principles of optics[M]. 7th ed. Cambridge, UK: Cambridge University Press, 2019: 735-739.
    [22]

    NOWACKI W. Thermoelasticity[M]. 2nd ed. New York, USA: Pergamon Press, 1986: 1-44.
    [23]

    WANG H G. Introduction to thermoelasticity[M]. Beijing: Tsinghua University Press, 1989: 1-66 (in Chinese).
    [24]

    YAN Z D, WANG H L. Heat stress[M]. Beijing: Higher Education Press, 1993: 98-100 (in Chinese).
    [25]

    SUN F, CHENG Z H, ZHANG Y N, et al. Effects of clamping methods for laser mirrors on thermal deformation[J]. High Power Laser and Particle Beams, 2003, 15(8): 751-754 (in Chinese).
    [26]

    GLASSBRENNER C J, SLACK G A. Thermal conductivity of silicon and germanium from 3°K to the melting point[J]. Physical Review, 1964, A134(4): 634-636.
    [27]

    SHANKS H R, MAYCOCK P D, SIDLES P H, et al. Thermal conductivity of silicon from 300 to 1400°K[J]. Physical Review, 1963, 130(5): 1743-1748. doi: 10.1103/PhysRev.130.1743
    [28]

    OKADA Y, TOKUMARU Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500K[J]. Journal of Applied Physics, 1984, 56(2): 314-320.
    [29]

    MILLS K C, LEE C. Thermophysical properties of silicon[J]. The Iron and Steel Institute of Japan, 2000, 40(s): S130-S138.
  • [1] 吕百达 . 关于激光光束质量若干问题的分析. 激光技术, 1998, 22(1): 14-17.
    [2] 张建云陈帆马骏潘少华魏聪王敏刘戴明 . 熔融石英基片热形变及其对光束质量的影响分析. 激光技术, 2019, 43(3): 374-379. doi: 10.7510/jgjs.issn.1001-3806.2019.03.016
    [3] 李家程愿应孙奕 . CO2激光器方型腔模式的有限元法分析初探. 激光技术, 1995, 19(5): 271-273.
    [4] 栗兴良牛春晖马牧燕吕勇 . 单脉冲激光损伤CCD探测器的有限元仿真. 激光技术, 2016, 40(5): 730-733. doi: 10.7510/jgjs.issn.1001-3806.2016.05.023
    [5] 郑晖林季鹏史斐戴殊韬江雄康治军翁文林文雄 . 倍频过程对激光光束质量及空间分布的影响. 激光技术, 2009, 33(1): 67-70.
    [6] 张靳黄磊王东生殷聪巩马理 . 光学组合半导体激光器输出光束特性研究. 激光技术, 2007, 31(3): 228-231,241.
    [7] 季小玲陶向阳吕百达 . 高功率激光束的远场特性研究. 激光技术, 2004, 28(3): 251-254.
    [8] 张恩涛季小玲吕百达 . 内光路中大气吸收对远场光束质量的影响. 激光技术, 2006, 30(1): 96-98.
    [9] 薛海中陆富源薛梅柳强过振张海涛巩马理 . Yb:YAG板条激光器谐振腔设计与光束质量测量. 激光技术, 2006, 30(6): 585-588.
    [10] 艾尼江·阿塔伍拉阿布都热苏力·阿不都热西提 . 基于高斯光束的飞秒激光光束质量检测技术. 激光技术, 2019, 43(6): 846-849. doi: 10.7510/jgjs.issn.1001-3806.2019.06.021
    [11] 杨孝敬焦清局王乙婷 . 光束参量积对半导体激光器光束质量的评估. 激光技术, 2018, 42(6): 859-861. doi: 10.7510/jgjs.issn.1001-3806.2018.06.025
    [12] 赵长明 . 激光光束质量参数测量的实验研究. 激光技术, 2000, 24(6): 341-344.
    [13] 马毅勇程祖海库耕张耀宁 . 孔栅分束镜测量强激光远场光束质量的研究. 激光技术, 1998, 22(2): 118-121.
    [14] 杨峰余文峰陈佳元邬思明左都罗程祖海 . TEA CO2激光器同轴非稳腔光束质量. 激光技术, 2008, 32(3): 314-316.
    [15] 盛朝霞王再军 . 强激光输出窗口热行为对光束质量的影响. 激光技术, 2008, 32(3): 278-280.
    [16] 熊新健陈培锋王英杨亚楠李响 . 半导体侧面抽运板条激光器光束质量优化. 激光技术, 2019, 43(5): 724-728. doi: 10.7510/jgjs.issn.1001-3806.2019.05.026
    [17] 李蕾臧景峰 . 双狭缝扫描法测量激光光束质量. 激光技术, 2015, 39(6): 845-849. doi: 10.7510/jgjs.issn.1001-3806.2015.06.024
    [18] 丘军林 . 高功率激光器的光束质量及其对激光加工的影响. 激光技术, 1994, 18(2): 86-91.
    [19] 陈培锋陈涛丘军林 . 材料加工用激光束质量初探. 激光技术, 1995, 19(5): 289-292.
    [20] 李呈德陈涛万盈左铁钏 . LPX305iF型准分子激光光束质量诊断. 激光技术, 2000, 24(3): 155-157.
  • 加载中
图(8)
计量
  • 文章访问数:  8347
  • HTML全文浏览量:  6988
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2021-10-18
  • 刊出日期:  2022-11-25

高功率激光作用下光学元件非线性热效应研究

    通讯作者: 李斌成, bcli@uestc.edu.cn
    作者简介: 王天明(1995-), 男, 硕士研究生, 现主要从事光热检测技术相关的研究
  • 电子科技大学 光电科学与工程学院, 成都 610054
基金项目:  国家自然科学基金NSAF联合基金资助项目 U1830132

摘要: 为了研究高功率激光作用下光学元件热效应的非线性特性对光束质量的影响, 基于热传导、热弹性力学、物理光学等基础理论, 采用有限元分析方法, 进行了高功率连续激光(功率密度约为500kW/cm2)作用下光学元件的温度场和位移场的计算; 分析对比了各个参数的非线性特性对光学元件热效应的影响; 探讨了不同材料、不同形状光斑辐照下的光学元件非线性热效应。结果表明, 高功率连续激光作用下光学元件所反映出的热学、力学和光学吸收存在着不同程度的非线性效应, 其强弱取决于光学元件材料、光斑形状等因素; 高斯激光辐照熔石英样品且吸收率为100×10-6时, 考虑物性参数和温度边界条件的非线性, 会引起表面最大温升16%的相对误差和表面变形峰谷值10%的相对误差。这一结果为开展与此相关的研究提供了一些新思路。

English Abstract

    • 光束质量是评价高功率激光系统性能的一个重要指标,而光学元件中的热效应与输出光束质量有着密不可分的关联。一个高功率激光系统中包含大量光学元件,在高功率密度运行条件下这些光学元件由于光吸收会产生一定的热沉积和非均匀温度分布,与之伴随的热光效应和热弹效应会导致激光光束产生双折射、退偏、波前畸变等现象,降低输出光束质量[1-6]。进一步提高光功率密度甚至会造成光学元件的热熔或应力断裂等损伤[7]。因此,光学元件的热效应已经成为当前制约高功率激光系统性能的主要因素之一。

      虽然国内外有不少关于激光系统中光学元件热效应的研究,但都是基于线性模型,即材料热物性参数、光学吸收系数等不随温度变化,而鲜见高功率激光作用下光学元件非线性热效应的研究报道。在高功率激光技术高速发展的今天,光学元件热效应的非线性特性将是越来越不可忽略的因素。PENG等人[5]基于线性模型对不同镜体材料的热畸变特性进行了有限元数值模拟与分析讨论。LIU等人[2]基于线性模型,使用有限元法计算了硅镜在中空非均匀激光辐照下的镜面温升和反射面面形随时间变化的特性。HU等人[3]基于线性模型对激光辐照硅反射镜、熔石英窗口镜温度分布和热相差进行了模拟计算, 比较了相同吸收情形下, 两种元件温升、热相差分布的时间、空间特性。1986年,DRAGGOO等人[8]对高功率激光系统中光学元件的膜吸收进行了测量,近似拟合得到了吸收系数随温度、激光功率、光斑半径的变化关系,但其准确性和适用性有待提高[9]。2000年,CHOW等人[9]对高平均功率激光系统中光学元件复杂的膜吸收情况进行了相关研究,测量了不同情况下的膜吸收率随激光照射时间的变化关系,并对其物理机理进行了解释,但其解释说服力不够强,普适性也有待进一步研究。

      实际中,对于高功率连续激光(例如功率密度约为500kW/cm2)作用下光学元件的热效应,研究人员发现基于线性模型、均匀吸收等前提仿真计算得到的结果存在与实验结果不相符的情况,所以非常有必要对实际中可能存在的热效应的情况开展进一步研究,如参考文献[9]中报道的对于不同的样品,在相同功率密度激光辐照下吸收系数随激光辐照时间会呈现出不同的变化趋势。本文作者在相关研究的基础上,考虑了材料物性参数的非线性、温度边界条件的非线性,并基于吸收随温度线性变化的模型进行了一些仿真分析,分析了不同参数对光学元件热效应的影响,探讨了不同材料、不同形状光斑辐照下的光学元件的非线性热效应。

    • 求解高功率密度连续激光作用下光学元件的温度场是研究热效应的关键。通过温度场,便可求出由温度变化引起的折射率变化;通过基于温度场求解出的热弹场,便可求出由元件变形引起的波前畸变和由热应力引起的应力双折射[10]

    • 高功率连续激光作用下,光学元件所反映出的光学、热学和力学特征将会存在非线性温度效应,因此传统基于线性模型的光吸收、热传导、热弹耦合场的偏微分方程都将不再适用。对于基于线性的温度场和热弹场问题,已有不少解析解推导和有限元计算的研究[11-15],且相对较为成熟。但基于非线性的问题,温度场除极少数的情形外[16],几乎求不出解析解,求出热弹场的解析解更是难上加难。所以本文中也通过有限元法来求解。

      一般来说,温度场和热弹场的非线性效应主要来源于3个方面:物性参数、热辐射边界条件和光学吸收系数随温度的变化。

      以熔石英玻璃为例, 其热导率、密度、比热容、杨氏模量、泊松比和线性热膨胀系数随温度的变化曲线如图 1所示[17-18]。以该材料的热导率为例,它随温度会呈现先缓慢增长后迅速增长的变化趋势。简单来说,是因为总的热导率是传导热导率和辐射热导率之和,温度越高,辐射热导率的贡献越来越大,所以总热导率随温度的增长会越来越快[18]。毫无疑问,各参数复杂的变化趋势会导致温度场和热弹场的求解结果难以预测。

      Figure 1.  Temperature dependences of physical parameters of a typical fused silica sample

      对于热辐射边界条件,即边界热流与温度的四次方成正比,是一种高度非线性的边界条件。显然,温度越高,该非线性因素越不可忽略。

      除物性参数外,已有的研究表明[17, 19],光学吸收率[20-21]也会随着光学元件温度下的变化而变化。现假设吸收率α随温度T的变化关系为:

      $ α=n+mT $

      (1)

      式中,n为室温下的吸收率,m为吸收率随温度变化的系数。nm与波长、光学元件材料等相关,具体取值由实测得到。

    • 对于温度变化不大的热传导问题,温度场可用一般的温度控制方程(含热源,常物性的均匀各向同性物体区域的热传导微分方程)及其相应条件求解得到,求解的是线性问题。线性模型是忽略了温度及其各类导数的一次方以上项的结果。当温度变化较大时,将导致相应的数学模型为非线性的,或者泛定方程为非线性,或若干定解条件为非线性。基于非线性的定解问题的泛定方程为[16]

      $ \nabla \cdot[\kappa(T) \nabla T]+g(r, t)=\rho(T) c_p(T) \frac{\partial T}{\partial t} $

      (2)

      式中,$\nabla$为算子, κ(T), ρ(T), cp(T)分别为材料热导率、密度和定压比热容,它们都是温度T的函数,g(r, t)为热源项, r为半径, t为时间。

      边界条件考虑对流换热和热辐射:

      $ \pm \kappa(T) \frac{\partial T}{\partial s}=h\left(T^{\prime}-T\right)+\varepsilon \sigma\left(T^{\prime 4}-T^4\right) $

      (3)

      式中,h为换热系数,ε为史蒂芬-玻尔兹曼常数,σ为辐射系数,T′为环境温度, ∂T/∂s为温度沿界面外法线方向的导数。

      对于高平均功率连续激光辐照光学元件的热弹场问题,依旧可近似认为具有变形较小、温度变化缓慢的特征。变形较小,也就意味着在推导热弹性运动方程的过程中可以略去非线性项(应变表达式中位移的非线性项和本构方程中的非线性项);温度变化缓慢,也就意味着可以略去热弹性运动方程中的动力项(即位移随时间的2阶导数项)和热弹性材料的热传导方程中的耦合项,这样温度场就可以通过求解前面讨论过的热传导方程来得到,位移场可以通过求解如下拟静态的热弹性运动方程来得到[22-24]

      热弹性运动方程的矢量形式为:

      $ \begin{gathered} {[1-2 \nu(T)] \nabla^2 \boldsymbol{u}+\nabla(\nabla \cdot \boldsymbol{u})=} \\ 2[1+\nu(T)] \alpha_{\mathrm{th}}(T) \nabla T \end{gathered} $

      (4)

      或写成柱坐标系下的标量形式:

      $ \left\{\begin{array}{l} \nabla^2 u_r-\frac{u_r}{r^2}-\frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta}+\frac{1}{1-2 \nu} \frac{\partial e}{\partial r}-\frac{2[1+\nu(T)]}{1-2 \nu(T)} \alpha_{\mathrm{th}}(T) \frac{\partial T}{\partial r}=0 \\ \nabla^2 u_\theta-\frac{u_\theta}{r^2}+\frac{2}{r^2} \frac{\partial u_r}{\partial \theta}+\frac{1}{1-2 \nu(T)} \frac{1}{r} \frac{\partial e}{\partial \theta}-\frac{2[1+\nu(T)]}{1-2 \nu(T)} \alpha_{\mathrm{th}}(T) \frac{1}{r} \frac{\partial T}{\partial \theta}=0 \\ \nabla^2 u_z+\frac{1}{1-2 \nu(T)} \frac{\partial e}{\partial z}-\frac{2[1+\nu(T)]}{1-2 \nu(T)} \alpha_{\mathrm{th}}(T) \frac{\partial T}{\partial z}=0 \end{array}\right. $

      (5)

      $ e=\frac{\partial u_r}{\partial r}+\frac{1}{r} \frac{\partial u_\theta}{\partial \theta}+\frac{u_r}{r}+\frac{\partial u_z}{\partial z} $

      (6)

      式中,u为样品变形位移矢量,ur为径向分量,uθ为环向分量,uz为轴向分量,ν(T)为泊松比,αth(T)为样品线性膨胀系数,T(r, θ, z, t)为样品的温度分布。如果是轴对称问题,则:uθ=0, ur=ur(r, z), uz=uz(r, z)。

    • 利用有限元仿真软件,求解了不同情况下的温度场和位移场。取光学元件样品直径为30mm,厚度为5mm;温度边界条件中,换热系数取5W/(m·K),辐射系数取0.74;力学边界条件取径向固定(压圈法)[25];加热时间为90s。吸收率中的nm理应由实际测量得到,但这里只能通过假设来进行分析研究。

    • 取高斯激光功率为15kW, 光斑直径为2mm,考虑前后表面吸收且吸收率相等的情况(增透光学元件)。计算中用到的熔石英的物性参数如图 1所示。

      不予考虑物性参数和温度边界条件非线性的表面温升和变形分布如图 2所示(图中L表示线性(linear),NL表示非线性(non linear))。n为50×10-6, 100×10-6和200×10-6时考虑物性参数和温度边界条件非线性的样品中心表面温升比不考虑任何非线性的情况分别约低17K, 57K和182K(分别约为不考虑任何非线性的样品中心表面温升的9%, 16%, 25%),这主要是该材料的热导率和比热容随温度的升高而增大以及考虑温度辐射边界条件导致的。可以看出,仅考虑物性参数和温度边界条件非线性的表面温升较线性情况会偏低,其差值随温度为非线性变化的关系;对应的表面变形峰谷(peak-to-valley, PV)值分别约高10nm, 24nm和14nm(分别约为不考虑任何非线性的样品表面变形PV值的8%, 10%和3%)。显然对于像熔石英这类的热导率随温度的升高而增大的材料,由于物性参数引起的非线性效应至少对整个高功率激光系统的温升是有利的。

      Figure 2.  Comparison of calculation results of fused quartz samples irradiated by Gaussian laser, with and without the nonlinearity of physical parameters and temperature boundary conditions

      在考虑物性参数和温度边界条件非线性的前提下,考虑吸收非线性与否的表面温升和表面变形分布如图 3所示。其中假设n=100×10-6, m分别为0.01×10-6K-1, 0.05×10-6K-1, 0.1×10-6K-1。可以看出,在m可能的取值范围内,温度场和位移场的变化非常明显。由此可见,确定表示吸收非线性强弱的m值是准确描述高功率激光照射下的样品吸收的关键。

      Figure 3.  Comparison of calculation results of fused quartz sample irradiated by Gaussian laser, with and without the nonlinearity of absorption

      图 4是取n=100×10-6的情况下,样品中心表面的温度和变形随m的变化关系。显然,这样的吸收系数随温度升高而增大的非线性吸收可能会对温度和变形产生正反馈效应,这对高功率激光系统来说是极其不利的。

      Figure 4.  Variation of temperature rise and thermal deformation of the fused quartz sample center

    • 取高斯激光功率为15kW, 光斑直径为2mm,只考虑前表面吸收(高反射光学元件),取n=100×10-6。计算中用到的硅样品的物性参数来源于参考文献[26]~参考文献[29],这里不再进行讨论。

      不考虑任何非线性与考虑物性参数和温度边界条件非线性的表面温升和变形分布如图 5所示。在考虑物性参数和温度边界条件非线性的前提下,考虑和不考虑吸收非线性的表面温升和变形分布如图 6所示。其中假设n=100×10-6, m分别为0.01×10-6K-1, 0.05×10-6K-1和0.1×10-6K-1。可以看出,对于硅样品,在上述条件下不管是由于物性参数还是由于吸收所表现出来的非线性效应都不是很明显。这是因为硅的热导率很大(相比于熔石英),所以即使在高功率激光辐照下,硅样品的温升也不会很大,而非线性效应主要依赖于温升,温升越大,非线性效应越明显。显然,对于高功率激光辐照硅样品(即热导率很大的样品)的情况,很多时候是可以忽略热效应的非线性因素的,这将会给求解问题的计算量和计算时间带来好处。

      Figure 5.  Comparison of calculation results of silicon sample irradiated by Gaussion laser, with and without the nonlinearity of physical parameters and temperature boundary conditions

      Figure 6.  Comparison of calculation results of silicon sample irradiated by Gaussion laser, with and without the nonlinearity of absorption

    • 高功率激光采用非稳腔输出的光斑一般为环形光束[3, 7],本文中也对平顶环形激光辐照光学元件的情形进行一些探讨。取平顶环形激光功率为25kW,光斑外半径Rout=1.5mm, 内半径Rin=0.75mm(即遮拦比为0.5),考虑前后表面吸收且吸收率相等的情况,取n=100×10-6

      对于平顶环形激光辐照光学元件的情形,如图 7所示。考虑和不考虑物性参数和温度边界条件非线性的温度场差异与高斯激光辐照光学元件的情形基本一致,温升分布都是在温升较大时有明显差异,考虑物性参数和温度边界条件非线性的样品表面最大温升比不考虑任何非线性的情况低约85K(约为不考虑任何非线性的样品表面最大温升的20%);考虑和不考虑物性参数和温度边界条件非线性的样品表面变形差异主要出现在样品边缘,约为16nm。对于非线性吸收的情形,如图 8所示。在n一定的前提下,表面温度和变形依旧对m有很大的依赖性,并且表面温升与变形近似有同步变化的关系,这规律同样与高斯激光辐照光学元件的情形基本一致。需要注意的是,在上述仿真条件下,考虑和不考虑吸收非线性对于表面变形带来的差异主要出现在样品内部。

      Figure 7.  Comparison of calculation results of fused quartz sample irradiated by flat top ring laser, with and without the nonlinearity of physical parameters and temperature boundary conditions

      Figure 8.  Comparison of calculation results of fused quartz sample irradiated by flat top ring laser, with and without the absorption nonlinearity

    • 在考虑了物性参数非线性、温度边界条件非线性和光学吸收非线性的基础上,分析了不同参数对热效应的影响;探讨了不同材料、不同形状光斑辐照下的光学元件的非线性热效应。结果表明,高功率(功率密度约为500kW/cm2)连续激光作用下光学元件所反映出的热学、力学和光学吸收存在着不同程度的非线性效应,非线性效应的强弱取决于样品材料、光斑形状等因素,对于像熔石英这类低热导率的材料会存在不可忽略的非线性特性,而对于硅这类高热导率的材料,热效应的非线性非常弱。本文中的理论计算结果为相关实验研究提供了技术指导, 有关高功率激光照射下光学元件热效应非线性现象的实验研究将是下一步研究的重点。

参考文献 (29)

目录

    /

    返回文章
    返回