高级检索

基于n-MFSK调制的激光致声空-水跨介质通信方法

Method of laser-generated sound with n-MFSK modulation for air-water trans-media communication

  • 摘要: 为了改善空中平台和水下目标之间的激光致声通信技术, 采用了一种多进制多频移键控(n-MFSK)调制方式来提升激光致声空-水跨介质通信速率的方法。在借助激光致声热膨胀效应实现空-水界面处的光声转换基础上, 分别采用长脉冲法和重复频率法进行了调制及仿真验证, 得到了在调制频率数量为2的情况下, 2-MFSK调制可在2-FSK调制基础上将通信速率提高1倍的结果。结果表明, 长脉冲法主要通过激光阵列结合频率叠加的方式实现n-MFSK调制, 重复频率法则通过控制激光器频率变化进而在时域上以分配时间段的方式实现n-MFSK调制; 随着调制频率数量增加, 相对于n-FSK调制, n-MFSK调制下通信速率更高, 并可改善频带利用率, 但声压级和水中传输距离会随符号码元持续时间内调制频率数量增加而减小。该研究为未来激光致声空-水跨介质通信实际应用提供了参考。

     

    Abstract: In order to improve the laser acoustic communication technology between air platforms and underwater objects, the n-multifrequency shift keying (n-MFSK) modulation method was proposed to further enhance the laser acoustic air-water cross-media communication rate. Based on the thermal expansion effect of laser acoustic, the modulation methods of the long-pulse-duration laser method and the high repetitive rate method were defined and simulated. The result was obtained that 2-MFSK modulation doubles the communication rate on top of 2-FSK modulation for a modulation frequency number of 2. The n-MFSK modulation was achieved by the long-pulse-duration laser method, mainly through the laser array by means of frequency superposition, and the high repetitive rate method by controlling the allocation of time periods on the time domain of the laser frequency change. The results show that as the number of modulation frequencies increases, n-MFSK modulation can increase the communication rate and improve the band utilization relative to n-frequency shift keying (n-FSK) modulation at the cost of loss of the sound pressure level (SPL) and in-water-range. This study provides a reference for the practical application of laser acoustic air-water cross-media communication in the future.

     

/

返回文章
返回