高级检索

偏转激光切向修整凹形面金刚石倒角砂轮的研究

Research on diamond chamfer grinding wheel for tangentially dressing concave surface with deflection laser

  • 摘要: 为了减小凹形面金刚石砂轮的激光修整误差,建立激光遮蔽效应和激光斜面分散效应误差模型,分析了激光切向修整凹形面金刚石砂轮的误差来源,提出了偏转激光修整凹形面成形砂轮法,并通过理论分析和实验验证,探索了修整参数对凹形面砂轮轮廓精度和圆弧半径的影响。结果表明,在1°~1.5°的偏转角范围内,斜边轮廓修整精度为8 μm;在合适的偏转角度下,圆弧半径误差小于10 μm;在修整凹弧半径为0.2 mm和0.5 mm、补偿半径分别为0.03 mm和0.06 mm时,凹弧半径误差分别缩小0.02 mm和0.03 mm。偏转激光修整法有效地提高了修整精度,减小了修整误差,为凹形面金刚石修整提供了新思路。

     

    Abstract: In order to reduce the laser dressing error of concave-faced diamond wheels, the error models of laser masking effect and laser bevel dispersion effect were established, the error sources of laser tangential dressing of concave-faced diamond wheels were analyzed, and the deflection laser dressing method of concave-faced forming wheels was proposed. Through theoretical analysis and experimental verification, the influence of dressing parameters on the contour accuracy and circular radius of concave-faced wheels was explored. The results show that in the deflection angle range of 1°~1.5°, the beveled edge profile dressing accuracy is 8 μm; under the suitable deflection angle, the circular arc radius error is less than 10 μm; when dressing the concave arc radius of 0.2 mm and 0.5 mm, the compensation radius is 0.03 mm and 0.06 mm respectively, the concave arc radius error is reduced by 0.02 mm and 0.03 mm respectively. The deflection laser dressing method effectively improves dressing accuracy, reduces the dressing error, and provides a new idea for the dressing of concave diamonds.

     

/

返回文章
返回