Double random phase computer generated hologram of asymmetry fractional Fourier transform
-
Received Date:
2004-09-14
Accepted Date:
2004-10-01
-
Abstract
A new optical encryption technique based on double random phase computer-generated hologram of asymmetry fractional Fourier transform is presented.In this method,two phase functions are introduced into the input image and its fractional domain spectrum before the fractional Fourier transform hologram of original object of different order in the x and y directions.The transformed result is coded and fabricated into computer-generated hologram.In order to reconstruct the encoded image,two random functions and two orders must be matched.Because the decoding keys are added to four from two,anti-counterfeiting intensity can be improved greatly when it is used to encrypt image or anti-counterfeit.
-
-
References
[1]
|
虞祖良,金国藩.计算机制全息图[M].北京:清华大学出版社,1984.41~44.
|
[2]
|
NAMIAS V.The fractional order Fourier transform and its application in quantum mechanics[J].J Inst Maths Appl,1980,25 (3):241~265. |
[3]
|
DORSCH R G,LOHMANN A W,BITRAN Y et al.Chirp filtering in the fractional Fourier domain[J].Appl Opt,1994,33(32):7599~7602. |
[4]
|
MENDLOVIC D,OZAKATAS H M.Fourier transforms and their optical implementation[J].J O S A,1993,A10(9):1875~1881. |
[5]
|
GARCIA J,FERREIRA C,MENDLOVIC D et al.Anamorphic fractional Fourier transforming[J].Proc SPIE,1996,2730:271~274. |
[6]
|
MENDLOVIC D,OZAKATAS H M,LOHMANN A W.Fractional correlation[J].Appl Opt,1995,34(2):303~309. |
[7]
|
李俊,王红霞,何俊发 et al.一种分数相关尺度畸变不变识别新方法[J].激光技术,2005,29(2):180 ~182.
|
[8]
|
郭永康,黄奇中,杜惊雷et al.分数傅里叶变换全息图及其防伪中的应用[J].光学学报,1999,19(6):821~825.
|
[9]
|
UNNIKRISHNAN G,JOSEPH J,SINGH K.Optical encryption bydouble-random phase encoding in the fractional Fourier domain[J].Opt Lett,2000,25(12):887~889. |
[10]
|
GUO Y K,ZENG Y S,XIE Sh W et al.Implementation of image encoding and decoding by fractional Fourier transform CGH[J].Proc SPIE,2002,4924:31~38. |
[11]
|
盛兆玄,王红霞,何俊发 et al.不对称分数傅里叶变换计算全息[J].激光技术,2005,29(3):295~296.
|
-
-
Proportional views
-