Abstract:
In order to study the fabricating process and the theory of the micro opto-electronic mechanical system(MOEMS)corner-cube reflector(CCR), the self-assembly method was used. The principle of self-assembly method fabricating MOEMS CCR was introduced. First, the shape of hinge can be patterned by lithography and the region of CCR plane was selectively etched. Secondly, using selective etching solutions, the sacrificial layer was exposed. Thirdly, after the sacrificial layer was etched, the CCR was self-assembled through the hinge drive the mirror bending up under the driven stress until reach an equilibrium position, which the driven stress was created by the lattice mismatch between the bilayer. Because finite element method was suitable to solve the nonlinear problems of elastic stress, it was applied to analysis and models the CCR, mirrors with different angels and a micro-cube box were also successfully simulated. Furthermore, by adjusting the size of mirror and hinge, the thickness of the strain bilayer and the top layer, which affect the rotation angle of the mirror, simulation analysis was carried out. It was shown that the self-assembly method was one of very feasible method for fabricating 3-D micro/nano structures and had a good prospect of application.