-
碱金属激光器是以碱金属原子(Li、Na、K、Rb和Cs)的饱和蒸气作为增益介质,通过其最外层电子的能级跃迁来实现激光作用的一种典型的三能级激光器[11, 13]。碱金属原子具有相似的能级结构,如图 1所示。图中, 2S1/2为基态能级,2P1/2和2P3/2分别为两个激发态能级。通过抽运将电子由D2线激发到2P3/2能级上,经弛豫振荡后电子由2S1/2能级跃迁至基态能级上(D1线跃迁),伴随出光[14-15]。表 1中列出了D1和D2线跃迁情况和对应的斯托克斯效率值。
表 1 不同碱金属原子的抽运波长、激光波长、精细结构能级间隔和斯托克斯效率
碱金属原子 D2线波长/nm D1线波长/nm ΔE能级间隔/cm-1 斯托克斯效率/% Li 670.96 670.98 0.34 约100 Na 589.76 589.16 17.2 99.9 K 766.70 770.11 57.7 99.5 Rb 780.25 794.98 237.9 98.1 Cs 852.35 894.59 554.1 95.2 由于Li和Na原子的精细结构能级间隔非常小,难以实现粒子数反转,因此,目前国内外通常以K、Rb和Cs作为增益介质进行碱金属激光器的研究。早期的抽运源线宽较宽,难以与碱金属原子抽运吸收线宽相匹配,直到半导体激光器抽运技术的发展,才使这一问题得到解决。
2004年,美国利弗莫尔实验室的BEACH等人报道了碱金属激光器的第1篇理论模型研究工作[16],介绍了最基本的静态铯蒸气激光器的三能级理论模型构建及数据分析,并在低功率抽运情况下与实验结果吻合得很好(见图 2)。2011年,美国空军研究院的KNIZE等人提出了碱金属的五能级系统,在典型三能级理论基础上增加了更高的碱金属原子能量碰撞转移能级和电离能级,计算了碱金属激光器中能量碰撞转移和光致电离的详细数据,并指出在高功率情况下中性碱金属原子的电离对激光器的效率会有不可忽略的影响[17]。2011年,国防科学技术大学的YANG等人报道了侧面抽运碱金属激光放大器内放大自发辐射(amplified spontaneous emission,ASE)对激光输出性能影响的理论研究工作[18],第1次在碱金属激光研究领域指出了ASE对于大功率化的重要性。
图 2 美国利弗莫尔实验室的静态DPAL[16]
2012年,以色列的BARMASHENKO等人在理论建模中综合考虑了光致电离以及Cs原子化学反应等因素的影响,得到了在高功率抽运情况下与ZHDANOV的实验结果[19]较为吻合的模拟计算结果[20],如图 3所示, 图中CW为连续波(continuous wave)。同年,该团队构建了流动式碱金属激光器理论模型,研究并报道了碱金属蒸气流速对激光器输出功率的影响,结果表明, 激光器输出功率随着流速的增加而明显增大,但是温度并没有显著升高(见图 4),意味着流动式碱金属激光器具有更好的热管理机制[21]。2016年,BARMASHENKO团队构建了精确的计算流体力学(computational fluid dynamics,CFD)模型研究超音速流动DPAL的输出性能,对比了超音速、准音速、亚音速情况下的输出功率情况,结果显示, 3种流速情况下激光器输出功率都可以达到兆瓦量级[22]。
图 3 BARMASHENKO的计算结果与ZHDANOV的实验结果对比[20]
图 4 流速对激光器输出功率和内部温度的影响[21]
2018年,日本东海大学的ENDO等人基于实验数据,理论分析了缓冲气体不同组分对铯蒸气激光器性能的影响。结果表明,缓冲气氛中甲烷、乙烷、丙烷的不同混合比例对激光的最高输出功率影响不大,但对铯的上能级混合碰撞截面有影响。课题组基于实验数据,理论计算得到了不同情况下的淬灭截面数据[23]。同年,ENDO团队基于波动光学构建了简化的流动DPAL模型,对激光器的热透镜效应进行了研究分析(见图 5)[24], 计算结果显示, 该模型可以准确预判由于弛豫跃迁的放热反应导致的增益介质内的温度分布及其对应的热透镜现象; 而抽运功率密度低于10kW/cm2时,更高能级的电离行为对激光器输出性能的影响可以忽略。
图 5 ENDO团队理论模型示意图[24]
半导体激光抽运碱金属激光器研究进展
Research and development of diode pumped alkali lasers
-
摘要: 半导体激光抽运碱金属激光器(DPAL)具有很高的斯托克斯效率、高光束质量、近红外光谱等优异的特性, 得到了广泛的关注和较快的发展。作为典型的三能级激光器, 碱金属激光器连续输出的近红外波长分别为895nm(铯), 795nm(铷), 770nm(钾)。介绍了半导体激光抽运碱金属激光器的物理机理和重要研究进展, 以及作者团队在碱金属激光器方向做的理论和实验研究情况, 讨论了该领域存在的问题和难点, 并对碱金属激光器的未来发展进行了分析和展望。Abstract: Diode pumped alkali laser (DPAL) have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size, and near-infrared emission wavelengths. As typical three-level lasers, the DPAL can be irradiated at the wavelengths of 895nm (Cs), 795nm (Ru), and 770nm (K), respectively. The laser kinetics and important research development are concluded in this paper, and the theoretical and experimental studies of our group are also introduced. Then, some problems and difficulties in this field have been discussed. Finally, we analyzed the development trend of DPAL in the near future.
-
Key words:
- lasers /
- alkali lasers /
- laser diode pump /
- gas flowing system
-
图 2 美国利弗莫尔实验室的静态DPAL[16]
a—光路图 b—理论(实线)与实验(点)数据
图 3 BARMASHENKO的计算结果与ZHDANOV的实验结果对比[20]
图 4 流速对激光器输出功率和内部温度的影响[21]
图 5 ENDO团队理论模型示意图[24]
图 6 PAGE等人利用半导体激光器作为抽运源的实验示意图[25]
图 7 铯蒸气激光器的输出特性曲线[4]
图 8 4路抽运铯激光器光路示意图[19]
图 9 俄罗斯联邦核子中心的实验光路图[29]
图 10 ZHDANOV团队的流动循环系统实验光路图[30]
图 14 输出功率与输出参数的3维与2维分布图[36]
图 15 碱金属作为增益介质的时域放大器实验结果[37]
图 16 碱金属蒸气池中可能存在的3种激光谐振腔[38]
图 17 Rb-Cs双波长激光输出的实验光路图[39]
表 1 不同碱金属原子的抽运波长、激光波长、精细结构能级间隔和斯托克斯效率
碱金属原子 D2线波长/nm D1线波长/nm ΔE能级间隔/cm-1 斯托克斯效率/% Li 670.96 670.98 0.34 约100 Na 589.76 589.16 17.2 99.9 K 766.70 770.11 57.7 99.5 Rb 780.25 794.98 237.9 98.1 Cs 852.35 894.59 554.1 95.2 -
[1] KRUPKE W F. Diode pumped alkali lasers (DPALs): A review (rev1) [J]. Progress in Quantum Electronics, 2012, 36(1): 4-28. doi: 10.1016/j.pquantelec.2011.09.001 [2] ZHDANOV B V, KNIZE R J. Review of alkali laser research and development [J]. Optical Engineering, 2013, 52(2): 021010. [3] KRUPKE W F, BEACH R J, KANZ V K, et al. Resonance transition 795nm rubidium laser [J]. Optics Letters, 2003, 28(23): 2336-2338. doi: 10.1364/OL.28.002336 [4] ZHDANOV B V, EHRENREICH T, KNIZE R J. Highly efficient optically pumped cesium vapor laser [J]. Optics Communications, 2006, 260(2): 696-698. doi: 10.1016/j.optcom.2005.11.042 [5] GAVRIELIDES A, SCHLIE L A, LOPER R D, et al. Unstable resonators for high power diode pumped alkali lasers [J]. Proceedings of the SPIE, 2017, 10090: 100901M. [6] ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Power degradation due to thermal effects in potassium diode pumped alkali laser [J]. Optics Communications, 2015, 341: 97-100. doi: 10.1016/j.optcom.2014.12.021 [7] AUSLENDER I, COHEN T, LEBIUSH E, et al. Optically-pumped Cs vapor lasers: Pump-to-laser beam overlap optimization [J]. Proceedings of the SPIE, 2017, 10254: 102540P. [8] HURD E J, HOLTGRAVE J C, PERRAM G P. Intensity scaling of an optically pumped potassium laser [J]. Optics Communications, 2015, 357: 63-66. doi: 10.1016/j.optcom.2015.08.087 [9] HAN J H, WANG Y, CAI H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part Ⅱ) [J]. Optics Express, 2015, 23(7): 9508-9515. doi: 10.1364/OE.23.009508 [10] ENDO M. Possible repetitive pulse operation of diode-pumped alkali laser (DPAL) [J]. Proceedings of the SPIE, 2017, 10254: 102540T. [11] HAGER G D, PERRAM G P. A three-level analytic model for alkali metal vapor lasers: Part Ⅰ. Narrowband optical pumping [J]. Applied Physics, 2010, B101: 45-56. [12] BARMASHENKO B D, ROSENWAKS S, HEAVEN M C. Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions [J]. Optics Communications, 2013, 292: 123-125. doi: 10.1016/j.optcom.2012.11.044 [13] YACOBY E, WAICHMAN K, SADOT O, et al. Modeling of supersonic diode pumped alkali lasers [J]. Journal of the Optical Society of America, 2015, B32(9): 1824-1833. [14] HAN J H, WANG Y, AN G F, et al. Investigation of physical features of both static and flowing-gas diode-pumped rubidium vapor lasers [J]. Proceedings of the SPIE, 2014, 9266: 92660P. doi: 10.1117/12.2072018 [15] MORAN P J, RICHARDS R M, RICE C A, et al. Near infrared rubidium 62P3/2, 1/2→62S1/2 laser [J]. Optics Communications, 2016, 374: 51-57. doi: 10.1016/j.optcom.2016.03.090 [16] BEACH R J, KRUPKE W F, KANZ V K, et al. End-pumped continuous-wave alkali vapor lasers: Experiment, model, and power scaling [J]. Journal of the Optical Society of America, 2004, B21(12): 2151-2163. [17] KNIZE R J, ZHDANOV B V, SHAFFER M K. Photoionization in alkali lasers [J]. Optics Express, 2011, 19(8): 7894-7902. doi: 10.1364/OE.19.007894 [18] YANG Z N, WANG H Y, LU Q S, et al. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission [J]. Optics Express, 2011, 19(23): 23118-23131. doi: 10.1364/OE.19.023118 [19] ZHDANOV B V, SELL J, KNIZE R J. Multiple laser diode array pumped Cs laser with 48W output power [J]. Electronics Letters, 2008, 44(9): 582-583. doi: 10.1049/el:20080728 [20] BARMASHENKO B D, ROSENWAKS S. Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers [J]. Journal of the Optical Society of America, 2013, B30(5): 1118-1126. [21] BARMASHENKO B D, ROSENWAKS S, Modeling of flowing gas diode pumped alkali lasers: Dependence of the operation on the gas velocity and on the nature of the buffer gas [J]. Optics Letters, 2012, 37(17): 3615-3617. doi: 10.1364/OL.37.003615 [22] BARMASHENKO B D, AUSLENDER I, YACOBY E, et al. Mo-deling of static and flowing-gas diode pumped alkali lasers [J]. Proceedings of the SPIE, 2016, 9729: 972904. [23] ENDO M, YAMAMOTO T, YAMAMOTO F, et al. Diode-pumped cesium vapor laser operated with various hydrocarbon gases and compared with numerical simulation [J]. Optical Engineering, 2018, 57(12): 1. [24] ENDO M, NAGAOKA R, NAGAOKA H, et al. Wave-optics simulation of diode-pumped cesium vapor laser coupled with a simplified gas-flow model [J]. Japanese Journal of Applied Physics, 2018, 57(9): 092701-092708. doi: 10.7567/JJAP.57.092701 [25] PAGE R H, BEACH R J, KANZ V K, et al. Multimode-diode-pumped gas (alkali-vapor) laser [J]. Optics Letters, 2006, 31(3): 353-355. doi: 10.1364/OL.31.000353 [26] WANG Y, KASAMATSU T, ZHENG Y, et al. Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array [J]. Applied Physics Letters, 2006, 88(14): 141112. doi: 10.1063/1.2192975 [27] ZHDANOV B V, MAES C, EHRENREICH T, et al. Optically pumped potassium laser [J]. Optics Communications, 2007, 270(2): 353-355. doi: 10.1016/j.optcom.2006.09.037 [28] ZWEIBACK J, KOMASHKO A. High-energy transversely pumped alkali vapor laser [J]. Proceedings of the SPIE, 2011, 7915: 791509. doi: 10.1117/12.875725 [29] BOGACHEV A V, GARANIN S, DUDOV A, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation [J]. Quantum Electronics, 2012, 42(2): 95-98. doi: 10.1070/QE2012v042n02ABEH014734 [30] ZHDANOV B V, ROTONDARO M D, SHAFFER M K, et al. Potassium diode pumped alkali laser demonstration using a closed cycle flowing system [J]. Optics Communications, 2015, 354: 256-258. doi: 10.1016/j.optcom.2015.06.010 [31] PITZ G A, STALNAKER D M, GUILD E M, et al. Advancements in flowing diode pumped alkali lasers [J]. Proceedings of the SPIE, 2016, 9729: 972902. [32] YACOBY E, AUSLENDER I, WAICHMAN K, et al. Analysis of continuous wave diode pumped cesium laser with gas circulation: Experimental and theoretical studies [J]. Optics Express, 2018, 26(14): 17814-17819. doi: 10.1364/OE.26.017814 [33] HAN J H, WANG Y, CAI H, et al. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: Part Ⅰ[J]. Optics Express, 2014, 22(11): 13988-14003. doi: 10.1364/OE.22.013988 [34] CAI H, WANG Y, XUE L P, et al. Theoretical study of relaxation oscillations in a free-running diode-pumped rubidium vapor laser [J]. Applied Physics, 2014, B117(4): 1201-1210. [35] NATHAN D Z, GORDON D H, WOLFGANG R, et al. Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser [J]. Journal of the Optical Society of America, 2011, B28(5): 1088-1099. [36] AN G F, WANG Y, HAN J H, et al. Optimization of physical conditions for a diode-pumped cesium vapor laser [J]. Optics Express, 2017, 25(4): 4335-4347. doi: 10.1364/OE.25.004335 [37] CAI H, YU Q, AN G F, et al. Temporally modulated laser with an alkali vapor amplifier [J]. Optics Letters, 2019, 44(7): 1778-1780. doi: 10.1364/OL.44.001778 [38] WANG S Y, LIU X X, YU Q, et al. Investigation of pernicious o-scillation inside a LD-pumped cesium vapor cell [J]. Journal of the Optical Society of America, 2018, B35(12): 2970-2976. [39] WANG S Y, DAI K, HAN J H, et al. Dual-wavelength end-pumped Rb-Cs vapor lasers [J]. Applied Optics, 2018, 57(32): 9562-9570. doi: 10.1364/AO.57.009562 [40] YANG J, AN G F, HAN J H, et al. Theoretical study on amplified spontaneous emission (ASE) in a V-pumped thin-disk alkali laser [J]. Optics & Laser Technology, 2021, 142: 107130.