铌酸锂量子器件研究进展
Research progress of lithium niobate quantum devices
-
摘要: 量子信息科技的进步, 在很大程度上依赖于传统材料的成熟与发展。近年来, 铌酸锂成为量子器件的重要基础材料, 在量子科技领域具有巨大的应用潜力。梳理了基于铌酸锂材料制备的量子光源、量子中继器件、单光子探测器件等各类铌酸锂量子器件的技术进展, 总结了它们的优缺点并展望了其未来主要的发展趋势, 对基于铌酸锂材料制备的量子器件在量子信息科技的实用化具有很好的指导作用。Abstract: The progress of quantum information technology depends to a large extent on the maturity and development of traditional materials. In recent years, lithium niobate has become an important building-block material for quantum devices, which have great application potential in the field of quantum science and technology. The technical progress of various lithium niobate quantum devices such as quantum emitters, quantum repeaters, and single photon detector prepared based on lithium niobate materials has been combed. The advantages and disadvantages of these devices were summarized, and their main development trends in the future were prospected. This study has a good guiding role for the practical application of quantum devices based on lithium niobate in quantum information technology.
-
Key words:
- quantum optics /
- quantum devices /
- nonlinear optics /
- lithium niobate
-
图 1 铌酸锂光子芯片结构示意图[16]
图 2 富硅氮化硅和薄膜PPLN混合波导的结构图[19]
图 3 薄膜PPLN波导的横截面[20]
图 5 实验装置图[25]
a—单光子频率转换器b—光子对制备c—Hong-Ou-Mandel干涉d—时间能量纠缠测试
图 6 制作的波导的假彩色扫描电镜图像及其周期极化过程示意图[26]
图 10 芯片配置和实验装置[35]
-
[1] QI Y F, LI Y. Integrated lithium niobate photonics [J]. Nanophotonics-Berlin, 2020, 9(6): 1287-1320. doi: 10.1515/nanoph-2020-0013 [2] MARTIN A, ISSAUTIER A, LABONTE L, et al. A polarization entangled photon-pair source based on a type-Ⅱ PPLN waveguide emitting at a telecom wavelength[J]. New Journal of Physics, 2010, 12(10): 103005. doi: 10.1088/1367-2630/12/10/103005 [3] TANZILLI S, RIEDMATTEN H D, TITTEL H, et al. Highly efficient photon-pair source using a periodically poled lithium niobate waveguide[J]. Electronics Letters, 2001, 37(1): 26-28. doi: 10.1049/el:20010009 [4] SOHLER W W, GRUNDKÖTTER W, HERRMANN H H, et al. All-optical signal processing devices with (periodically poled) lithium niobate waveguides[EB/OL]. (2020-12-14)[2021-10-17]. https://pure.tue.nl/ws/files/1937326/Metis207165.pdf. [5] RAMESH K, JOYEE G. Parametric down-conversion in PPLN ridge waveguide: A quantum analysis for efficient twin photons generation at 1550nm[J]. Journal of Optics, 2018, 20(7): 075202. doi: 10.1088/2040-8986/aac7da [6] RABIEI P, STEIER W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 2005, 86(16): 161115. doi: 10.1063/1.1906311 [7] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser Photonics Reviews, 2012, 6(4): 488-503. doi: 10.1002/lpor.201100035 [8] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator [J]. Optica, 2017, 4(12): 1536-1537. doi: 10.1364/OPTICA.4.001536 [9] ZHOU J X, GAO R H, LIN J, et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 2020, 37(8): 084201. doi: 10.1088/0256-307X/37/8/084201 [10] KURZKE H, KIETHE J, HEUER A, et al. Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal [J]. Laser Physics Letters, 2017, 14(5): 055402. doi: 10.1088/1612-202X/aa6889 [11] ALIBART O, D'AURIA V, DE MICHELI M, et al. Quantum photonics at telecom wavelengths based on lithium niobate waveguides [J]. Journal of Optics, 2016, 18(10): 104001. doi: 10.1088/2040-8978/18/10/104001 [12] TANZILLI S, TITTEL W, de RIEDMATTEN H, et al. PPLN waveguide for quantum communication [J]. The European Physical Journal, 2002, D18(2): 155-160. [13] HERRMANN H, YANG X, THOMAS A, et al. Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs [J]. Optics Express, 2013, 21(23): 27981-27991. doi: 10.1364/OE.21.027981 [14] ANTONOSYAN D, SOLNTSEV A, SUKHORUKOV A. Photon-pair generation in a quadratically nonlinear parity-time symmetric coupler [J]. Photonics Research, 2018, 6(4): A6-A9. doi: 10.1364/PRJ.6.0000A6 [15] MING Y, TAN A H, WU Z J, et al. Tailoring entanglement through domain engineering in a lithium niobate waveguide[J]. Scientific Reports, 2014, 4(1): 4812. [16] JIN H, LIU F, XU P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 2014, 113(10): 103601. doi: 10.1103/PhysRevLett.113.103601 [17] SUN Ch W, WU S H, DUAN J Ch, et al. Polarization entanglement source based on titanium diffused lithium oxide waveguide[C]//Abstracts of the 18th National Quantum Optics Academic Conference. Zhangjiajie: Chinese Physical Society, 2018: 013908(in Chinese). [18] DUAN J Ch, XU P, GONG Y X, et al. Wide tuning high quality identical photon pair based on lithium niobate optical quantum chip [C]//Abstracts of the 18th National Quantum Optics Academic Conference. Zhangjiajie: Chinese Physical Society, 2018: 013834(in Chinese). [19] CHENG X, SARIHAN M C, CHANG K C, et al. Design of spontaneous parametric down conversion in integrated hybrid SixNy-PPLN waveguides [J]. Optics Express, 2019, 27(21): 30773-30787. doi: 10.1364/OE.27.030773 [20] ZHAO J, MA C X, RUSING M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides[J]. Physical Review Letters, 2020, 124(16): 163603. doi: 10.1103/PhysRevLett.124.163603 [21] FLEISCHHAUER M, LUKIN M D. Dark-state polaritons in electromagnetically induced transparency[J]. Physical Review Letters, 2000, 84(22): 5094-5097. doi: 10.1103/PhysRevLett.84.5094 [22] ASKARANI M F, PUIGIBERT M L G, LUTZ T, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 2019, 11(5): 054056. doi: 10.1103/PhysRevApplied.11.054056 [23] DUTTA S, GOLDSCHMIDT E A, BARIK S, et al. Integrated photonic platform for rare-earth ions in thin film lithium niobate [J]. Nano Letters, 2020, 20(1): 741-747. doi: 10.1021/acs.nanolett.9b04679 [24] SHANDONG INSTITUTE OF QUANTUM SCIENCE AND TECHNOLOGY CO. LTD. Periodically polarized lithium niobate waveguide device based on double ended fiber coupling: CN 201420423090.0 [P]. 2014-12-03(in Chinese). [25] XIANG T, SUN Q C, LI Y H, et al. Single-photon frequency conversion via cascaded quadratic nonlinear processes [J]. Physical Review, 2018, A97(6): 063810. [26] WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438. doi: 10.1364/OPTICA.5.001438 [27] ALBOTA M A, WONG F N. Efficient single-photon counting at 1.55 microm by means of frequency up conversion [J]. Optics Letters, 2004, 29(13): 1449-1151. doi: 10.1364/OL.29.001449 [28] LANGROCK C, KURZ J R, FEJER M M, et al. Periodically poled lithi-um niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths [J]. Optics Letters, 2004, 29(13): 1518-1520. doi: 10.1364/OL.29.001518 [29] KAMADA H, ASOBE M, HONJO T, et al. Efficient and low-noise single-photon detec-tion in 1550nm communication band by frequency up conversion in periodi-cally poled NiNbO3 waveguides[J]. Optics Letters, 2008, 33(7): 639-641. doi: 10.1364/OL.33.000639 [30] ANON. The world's first commercial prototype of up conversion single photon detector has been successfully developed in China [J]. Sensor World, 2014, 20 (12): 44(in Chinese). [31] SHANDONG INSTITUTE OF QUANTUM SCIENCE AND TECHNOLOGY CO. LTD. Institute of advanced technology. University of science and technology of China. High efficiency near infrared up conversion single photon detector based on all fiber devices: CN 201520097422.5 [P]. 2015-06-17(in Chinese). [32] LIANG L Y, LIANG J S, YAO Q, et al. Compact all-fiber polarization-independent up-conversion single-photon detector [J]. Optics Communications, 2019, 441: 185-189. doi: 10.1016/j.optcom.2019.02.057 [33] YAO N, YAO Q, XIE X P, et al. Optimizing up-conversion single-photon detectors for quantum key distribution [J]. Optics Express, 2020, 28(17): 25123-25133. doi: 10.1364/OE.397767 [34] ALSAYEM A, CHENG R S, WANG S H, et al. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors [J]. Applied Physics Letters, 2020, 116(15): 151102. doi: 10.1063/1.5142852 [35] LENZINI F, JANOUSEK J, THEARLE O, et al. Integrated photonic platform for quantum information with continuous variables [J]. Science Advances, 2018, 4(12): 9331-9338. doi: 10.1126/sciadv.aat9331 [36] ZHANG Q Y, XUE G T, XU P, et al. Manipulation of tripartite frequency correlation under extended phase matchings [J]. Physical Review, 2018, A97(2): 022327. [37] ZHANG M, BUSCAINO B, WANG Ch, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. doi: 10.1038/s41586-019-1008-7 [38] WU J F, HUANG Y W, LU C Y, et al. Tunable linear polarization-state generator of single photons on a lithium niobate chip [J]. Physical Review Applied, 2020, 13(6): 064068. doi: 10.1103/PhysRevApplied.13.064068