-
表 1为7075铝合金的某些物理和机械性能。
ultimate tensile strength at room temperature/MPa density/(g·cm-3) melting temperature/℃ thermal conductivity/(W·m-1·K-1) thermal diffusivity/(mm2·s-1) specific heat capacity/(J·kg-1·K-1) 550 2.8 475~635 130 46 910 图 1为具体的实验装置示意图。
由图 1可以看出,通过硬件控制系统控制出光的连续光纤激光经过分光镜后将功率较小的一束光反射到功率计上实时测量,通过表头实时观察功率示数,透射光经过柱面镜后将圆形光斑进行横向拉伸,拉伸机和红外热像仪分别实时测量拉应力和温度场分布,通过计算机进行记录和保存。
图 2为激光与外载荷联合加载靶材的示意图。
激光与外载荷联合加载7075铝合金的实验研究
Experimental study of 7075 aluminum alloy under laser and external loading
-
摘要: 为了研究7075铝合金在激光与外载荷联合加载下的失效行为, 采用最大拉力50 kN的拉伸伺服试验机与工作波长为1070 nm的6 kW连续光纤激光系统对7075铝合金进行了不同预载荷与不同激光功率密度下的联合加载实验, 获得了该材料的拉应力-时间曲线、温度-时间曲线、失效时间-功率密度曲线、失效温度-功率密度曲线等, 分析了功率密度与预载荷对失效过程、失效温度和断裂形貌的影响。结果表明, 在相同的预载荷下, 激光功率密度的增大会导致失效时间非线性下降, 失效温度是否有较大变化取决于预载荷的大小, 当预载荷大(330 MPa, 440 MPa)时, 失效温度随功率密度增加略有升高, 预载荷较小(110 MPa, 220 MPa)时, 失效温度变化规律不单调; 在相同的激光功率密度下, 预载荷增大, 失效时间减少, 功率密度较大、预载荷较小时, 失效行为变得相似; 在一定的功率密度(315 W/cm2, 351 W/cm2)下, 失效温度随预载荷的增大先增大后减小。该结果进一步揭示了7075铝合金的失效机理。Abstract: In order to study the failure behavior of 7075 aluminum alloy under the combined loading of laser and external load, the joint loading experiments of 7075 aluminum alloy under different preloads and different laser power densities were carried out by using a tensile servo test machine with the maximum tension of 50 kN and a 6 kW continuous fiber laser system with the operating wavelength of 1070 nm. The tensile stress-time curve, temperature-time curve, fracture time-power density curve, and fracture temperature-power density curve were obtained. The effects of power density and preload on fracture process, fracture temperature, and fracture morphology were respectively analyzed. The results show that, under the same preload, the increase of laser power density leads to the nonlinear decline of fracture time, and the fracture temperature varies greatly depending on the size of preload. When the preload is large (330 MPa and 440 MPa), the fracture temperature increases slightly with the increase of power density, and when the preload is small (110 MPa and 220 MPa), the fracture temperature increases slightly with the increase of power density. Fracture temperature change rule is not monotonous, under the same laser power density, the fracture time decreases with the increase of preload, and the fracture behavior becomes similar with the increase of power density and the decrease of preload. At a certain power density (315 W/cm2 and 351 W/cm2), the fracture temperature increases first and then decreases with the increase of preload. The results further reveal the fracture mechanism of 7075 aluminum alloy.
-
Key words:
- laser technique /
- fracture temperature /
- fracture time /
- preload /
- 7075 aluminum alloy
-
ultimate tensile strength at room temperature/MPa density/(g·cm-3) melting temperature/℃ thermal conductivity/(W·m-1·K-1) thermal diffusivity/(mm2·s-1) specific heat capacity/(J·kg-1·K-1) 550 2.8 475~635 130 46 910 -
[1] 林高用, 张辉, 郭武超, 等. 7075铝合金热压缩变形流变应力[J]. 中国有色金属学报, 2001, 11(3): 412-415. doi: 10.3321/j.issn:1004-0609.2001.03.015 LIN G Y, ZHANG H, GUO W Ch, et al. Flow stress of 7075 aluminum alloy during hot compression deformation[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(3): 412-415(in Chinese). doi: 10.3321/j.issn:1004-0609.2001.03.015 [2] 陈康华, 刘允中, 刘红卫. 7075和2024铝合金的固溶组织与力学性能[J]. 中国有色金属学报, 2000, 10(6): 819-822. doi: 10.3321/j.issn:1004-0609.2000.06.011 CHEN K H, LIU Y Zh, LIU H W. Microstructure and mechanical properties of enhanced solution treated 7075 and 2024 aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 819-822(in Chinese). doi: 10.3321/j.issn:1004-0609.2000.06.011 [3] 丛福官, 赵刚, 田妮, 等. 7×××系超高强铝合金的强韧化研究进展及发展趋势[J]. 轻合金加工技术, 2012, 40(10): 23-33. CONG F G, ZHAO G, TIAN N, et al Research progress and development trend of strengthening-toughening of ultra-high strength 7××× aluminum alloy[J]. Light Alloy Fabrication Technology, 2012, 40(10): 23-33 (in Chinese). [4] 田恺惝. 高强度铝合金7075-T6温热成形极限实验研究[D]. 大连: 大连理工大学, 2017: 1-9. TIAN K Ch. Experimental research on forming limit of high strength 7075-T6 aluminum alloy under warm forming[D]. Dalian: Dalian University of Technology, 2017: 1-9(in Chinese). [5] 陈海韬, 夏生杰, 李旭昌, 等. 受拉铝板对连续波CO2激光的热机械响应[J]. 强激光与粒子束, 1992, 4(1): 141-147. CHEN H T, XIA Sh J, LI X Ch, et al. Thermo-mechanical response of Al plates under tension to CW CO2 laser radiation[J]. High Power Laser and Particle Beams, 1992, 4(1): 141-147(in Chinese). [6] 陈裕泽, 李思忠, 张光军. 连续波CO2激光作用下受拉铝板的瞬态破坏效应研究[J]. 强激光与粒子束, 1995, 7(2): 245-251. CHEN Y Z, LI S Zh, ZHANG G J. Transient fracture of the aluminum plate in tension and irradiated by CW CO2 laser beam[J]. High Power Laser and Particle Beams, 1995, 7(2): 245-251(in Chinese). [7] 吴东江, 张天武, 马广义, 等. 连续激光焊接Fe-Ni合金工艺参数对焊缝形貌的影响[J]. 中国激光, 2013, 40(3): 0303003. WU D J, ZHANG T W, MA G Y, et al. Influence of welding parameters on the morphology of Fe-Ni alloy with continuous wave YAG laser[J]. Chinese Journal of Lasers, 2013, 40(3): 0303003(in Ch-inese). [8] 谭宇, 陆健. 连续激光辐照三结GaAs太阳电池热应力场研究[J]. 激光技术, 2020, 44(2): 250-254. TAN Y, LU J. Study on three-junction GaAs solar cell thermal stress field by continuous wave laser irradiation[J]. Laser Technology, 2020, 44(2): 250-254(in Chinese). [9] 谢灿军, 童明波, 刘富, 等. 7075-T6铝合金动态力学试验及本构模型研究[J]. 振动与冲击, 2014, 33(18): 110-114. XIE C J, TONG M B, LIU F, et al. Dynamic tests and constitutive model for 7075-T6 aluminum alloy[J]. Journal of Vibration and Shock, 2014, 33(18): 110-114(in Chinese). [10] 蒋招绣, 辛铭之, 王永刚. 高强铝合金的动态拉伸断裂行为实验研究[J]. 固体力学学报, 2014, 35(6): 552-558. JIANG Zh X, XING M Zh, WANG Y G. Experimental study on dynamic tensile fracture of selected aluminum alloys[J]. Chinese Journal of Solid Mechanics, 2014, 35(6): 552-558(in Chinese). [11] 刘立婷. 连续激光辐照和力载荷共同作用下材料结构的失效[D]. 北京: 北京工业大学, 2012: 17-23. LIU L T. Fracture of materials or structures under continuous wave laser and mechanical load[D]. Beijing: Beijing University of Technology, 2012: 17-23(in Chinese). [12] PANDYA K S, ROTH C C, MOHR D. Strain rate and temperature dependent fracture of aluminum alloy 7075: Experiments and neural network modeling[J]. International Journal of Plasticity, 2020, 135: 102788. [13] JIANG Y F, WANG S L, JIANG W F, et al. Fatigue life and fracture evolution of small-hole specimens by laser shock processing[J]. Optics and Laser Technology, 2020, 131: 106423. [14] 张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型[J]. 爆炸与冲击, 2011, 31(1): 81-87. ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy[J]. Explosion and Shock Waves, 2011, 31(1): 81-87(in Chinese). [15] 衣海娇, 甄莹, 曹宇光, 等. 6061-T6铝合金断裂应变与应力三轴度关系研究[J]. 机械强度, 2020, 42(3): 551-558. YI H J, ZHEN Y, CAO Y G, et al. Research on the relationship between fracture strain and triaxiality of 6061-T6 aluminum alloy[J]. Journal of Mechanical Strength, 2020, 42(3): 551-558(in Chinese). [16] JELANI M, LI Z W, SHEN Z H, et al. Experimental investigations on thermo mechanical behaviour of aluminium alloys subjected to tensile loading and laser irradiation[J]. Proceedings of the SPIE, 2017, 10173: 101730E. [17] ZHOU G W, LI D Y, PENG Y H. Investigation of tensile deformation behavior of 7075-T6 at elevated temperatures[J]. Applied Mechanics and Materials, 2012, 152: 358-363. [18] ZHANG P, LI J, CHEN M H. Effect of different temperatures on the metallographic structure and tensile property of 2024-T4 alloy in integral heating single point incremental forming[J]. Microscopy Research and Technique, 2020, 83(8): 920-927.