Abstract:
To find the connection between the number of near-full absorbing mode and the Fabry-Pérot (F-P) multilayer F-P cavity when single-layer graphene is located in the multilayer F-P cavity and to improve the system's controlling ability to the diversity of absorbing modes, rigorous coupled-wave analysis was adopted. The response characteristics of two-layer and three-layer F-P resonator under critical coupling conditions were analyzed. The results show that perfect absorbing modes of more than 99% and 96% can be respectively formed in two-layer and three-layer F-P cavity systems. Among them, the absorption characteristics of three-layer F-P nested cavity system can be adjusted by doping graphene, and the number and relative positions of absorption modes of three-layer nested cavity can be controlled by changing the structure of three-layer F-P cavity. The system introduces a richer absorbing line type.