高级检索

光纤SPR传感器参数对折射率测量灵敏度的影响

Effect of optical fiber SPR sensor parameters on the sensitivity of refractive index measurement

  • 摘要: 为了研究光纤表面等离子体共振(SPR)传感器参数对折射率测量灵敏度的影响,采用双频激光外差干涉相位测量光路结合光纤型SPR传感器进行了折射率测量,并对光纤SPR传感器不同纤芯直径对传感器灵敏度影响进行了分析。在光纤SPR传感器适应的折射率范围内,分别使用纤芯直径为300 μm的光纤和400 μm的光纤,测量不同质量分数下的甘油、蔗糖、氯化钠溶液的相位差,并计算对应折射率;分析了在传感器适用的折射率范围内,各溶液质量分数与折射率之间的关系,并对理论结果进行了实验验证。结果表明,纤芯直径越小,传感器灵敏度越高,灵敏度可达10-5量级;密度越高,测量中的稳定性越高,最大相位差标准差为0.145°;分子量越大,精度越高,蔗糖的测量计算值与阿贝折射仪标定值之间的差值最大为0.52×10-4。该研究为光纤SPR传感技术的进一步研究及应用提供了较好基础。

     

    Abstract: In order to study of the effect of fiber optic surface plasmon resonance (SPR) sensor parameters on refractive index measurement sensitivity, refractive index measurement experiments were carried out by using the dual-frequency laser heterodyne interferometric phase measurement optical path combined with the optical fiber SPR sensor. The effect of different core diameters on sensor sensitivity of fiber optic SPR sensors was theoretically analyzed. Within the refractive index range adapted by fiber optic SPR sensors, optical fibers with a core diameter of 300 μm and fibers with a core diameter of 400 μm were used to measure the phase difference of glycerol, sucrose and sodium chloride solutions under different mass fractions, and to calculate the corresponding refractive index. The relationship between the mass fraction and refractive index of each solution within the refractive index range adapted by the sensor was analyzed, and the theoretical results were experimentally verified. The results show that the smaller the diameter of the core, the higher the sensitivity of the sensor, and the sensitivity can reach 10-5 orders of magnitude; The higher the density, the higher the stability in the measurement, and the maximum phase difference standard deviation is 0.145°; The larger the molecular weight, the higher the accuracy, and the difference between the measured calculation of sucrose and the calibration value of the Abbe refractometer is up to 0.52×10-4. This research provides a good foundation for the further research and application of optical fiber SPR sensing technology.

     

/

返回文章
返回