高级检索

测风激光雷达双棱镜2维扫描系统的光学设计

Optical design of biprism 2-D scanning system for wind LiDAR

  • 摘要: 传统的测风激光雷达双反射镜式2维扫描系统体积较大、结构相对复杂, 不利于系统小型一体化集成。基于旋转双圆楔形棱镜, 研究了新型2维光学扫描系统; 分析了系统的工作原理, 推导出了双圆楔形棱镜的旋转角与出射光束方位角及天顶角之间的简单正反向函数关系式, 对楔形棱镜的折射率和楔角进行了优化选取和设计。结果表明, 当工作波长为532 nm、楔形棱镜材料折射率为2.03时, 最优设计楔角为19.5°; 出射光束最大天顶角不仅取决于楔形棱镜折射率和楔角, 还受光束压缩效应的制约。该系统结构紧凑、便于集成, 能实现出射光束大范围和快速高精度的扫描, 也能实现测风激光雷达以平面位置显示、距离高度显示等光束扫描模式工作。

     

    Abstract: 2-D scanning system with double mirrors of a traditional wind light detection and ranging(LiDAR) was large in volume and complex in structure, which was not conducive to the small-scale integration of the system. A new 2-D optical scanning system based on rotating double circular wedge prism was studied. The working principle of the system was analyzed, and the simple forward and inverse functional relationship between the rotation angle of the double circular wedge prism and the azimuth and zenith angle of the outgoing beam was derived. The refractive index and wedge angle of the wedge prism were optimized and designed. The results show that when the working wavelength is 532 nm and the refractive index of wedge prism material is 2.03, the optimal wedge angle is 19.5°. The maximum zenith angle of the outgoing beam depends not only on the refractive index and wedge angle of the wedge prism, but also on the beam compression effect. The system is compact and easy to integrate, and large-scale, fast and high-precision scanning of the outgoing beam can be realized. The wind LiDAR can also work in beam scanning modes such as plane position display and distance height display.

     

/

返回文章
返回