高级检索

利用SLAM点云的玉米株数自动识别

Automatic recognition of the number of corn plants in farmland using SLAM point cloud

  • 摘要: 为了实现农田玉米株数的快速无损自动化识别, 提出一种利用同时定位与地图构建(SLAM)点云的农田玉米株数自动识别方法。借助飞马SLAM100手持扫描仪进行玉米田块点云数据采集, 充分利用SLAM点云中玉米植株的竖直度特征和扫描过程中植株的先验纹理特征, 进行玉米植株顶部的自动提取, 引入密度聚类算法进行玉米植株的区分与株数自动识别, 并通过农田实测数据进行实验。结果表明, 所设计的方法能够实现玉米植株的自动识别, 对玉米种植株数的识别率达到92.53%。该研究在玉米植株自动识别、作物估产以及智慧农业研究领域具有良好的工程应用价值。

     

    Abstract: In order to realize the rapid and non-destructive automatic recognition of corn plants in farmland, an automatic recognition method of corn plants using the simultaneous localization and mapping(SLAM) point cloud was proposed. The Pegasus SLAM100 hand-held scanner was used to collect the point cloud data of the corn field, making full use of the verticality characteristics of corn plants in the SLAM point cloud and the prior texture characteristics of plants in the scanning process, the top of corn plants were automatically extracted, then the density clustering algorithm was used to distinguish corn plants and automatically identify corn plants. The experimental results show that the method can realize the automatic recognition of corn plants, and the recognition rate is 92.53%. The research has good engineering application reference value in the fields of automatic corn plant identification, crop yield estimation, and intelligent agriculture research.

     

/

返回文章
返回