Abstract:
To obtain the stable mode-locked pulse train, the effects of filter bandwidth, saturable absorber (SA) modulation depth, and SA recovery time on mode-locking were analyzed numerically by the split-step Fourier method. According to the calculation results, the laser is established. The oscillator can generate self-starting dissipative soliton pulses train with a spectrum bandwidth of 0.104 nm and a repetition rate of 102.32 MHz. Meanwhile, the pulse train shows a slow broadening rate and good shape-preserving ability in the amplification process. This study indicates that this laser will have great application prospects in fiber probes, frequency comb, parameters optic and other fields.