高级检索

激光熔覆Ti3V2 Nb基轻质高熵合金涂层耐磨性能的研究

Study on wear resistance of laser cladding Ti3V2Nb based on lightweight high entropy alloy coatings

  • 摘要: 为了制备具有合适微观结构和优异性能的轻质高熵合金(LHEA),采用激光熔覆技术在TC4基体上制备了不同Al、Ni物质的量比的Ti3V2NbAlxNiy LHEA,对其微观结构及其摩擦磨损性能进行研究,并分析了添加微量MoB陶瓷颗粒对其组织性能的影响。结果表明,Ti3V2NbAl0.5Ni0.5、Ti3V2NbAl0.5、Ti3V2NbNi0.5涂层的物相由单一体心立方晶体(BCC)组成,而Ti3V2NbAl0.5Ni0.5/MoB涂层则形成了第2相A15相;相对基体的硬度,4种涂层的硬度均有提升;4种涂层的磨损形式主要为黏着磨损,磨痕内分布有黏着层与少量氧化层,此外也在磨痕内观察到轻微的磨粒磨损产生的犁沟特征,相对于基体的磨损率均有较大降低,其中Ti3V2NbAl0.5Ni0.5/MoB涂层的磨损率降低了51.1%。所制备的LHEA耐磨性好,可作为航空航天、国防设备制造等领域中TC4零件的保护性涂层。

     

    Abstract: In order to prepare lightweight high entropy alloy (LHEA) with suitable microstructure and excellent properties, Ti3V2NbAlxNiy LHEA with different Al and Ni ratios were prepared on TC4 substrate using laser cladding technology. Its microstructure, friction, and wear properties were studied, and the effect of adding a small amount of MoB ceramic particles on its microstructure and properties was discussed. The results show that the phases of Ti3V2NbAl0.5Ni0.5, Ti3V2NbAl0.5 and Ti3V2NbNi0.5 coatings are composed of a single body-centered cubic crystal(BCC), while the second phase A15 is formed in Ti3V2NbAl0.5Ni0.5/MoB coatings. Compared with the hardness of the matrix, the hardness of four coatings has been improved. The wear forms of four coatings are mainly adhesive wear, with adhesive layer and a small amount of oxide layer distributed in the wear marks, and furrow characteristics caused by slight abrasive wear are also observed in the wear marks. Compared with the matrix, the wear rate of Ti3V2NbAl0.5Ni0.5/MoB coating is greatly reduced, and the wear rate of Ti3V2NbAl0.5Ni0.5/MoB coating is reduced by 51.1%. The LHEA in this paper has good wear resistance and can be used as a protective coating for TC4 parts in aerospace, national defense equipment manufacturing and other fields.

     

/

返回文章
返回