Thermal characteristics of spontaneous emission spectra from external-cavity surface-emitting lasers
-
摘要: 热效应是限制外腔面发射激光器(VECSEL)输出功率和光束质量的主要原因。为了优化VECSEL增益芯片有源区量子阱的设计,降低激光器的热效应,提高斜效率和输出功率,采用光致荧光谱方法,对设计波长980nm VECSEL自发辐射谱的热特性进行了实验研究。取得了不同热沉温度下边发射和面发射谱随温度的变化数据。结果表明,反映有源区量子阱自身特性的边发射谱峰值波长随温度升高的红移速率是0.5nm/K,而受到增益芯片多层结构调制的面发射谱峰值波长随温度升高的红移速率只有0.1nm/K;由于受到VECSEL增益芯片中微腔的限制,面发射谱分离为多个模式,分别与微腔的腔模对应。可见对量子阱的发射波长及微腔腔长做预偏置优化处理,可以显著改善激光器的输出性能。Abstract: Thermal effect is the main reason limiting output power and beam quality of vertical-external-cavity surface-emitting lasers (VECSELs). To optimize the quantum design in active regions of gain chip, decrease thermal effect and upgrade slope efficiencies and output laser power, thermal characteristics of a VECSEL at 980nm wavelength were investigated experimentally by means of photoluminescence. The edge-emitting and surface-emitting spectra at different heatsink temperatures were obtained. The results indicate that the redshift rate of the edge-emitting spectra, which revels the intrinsic properties of quantum wells in active region, is 0.5nm/K with increasing temperature, while the redshift rate of the surface-emitting spectra, which are modulated by multiple-layer structure of the gain chip, is only 0.1nm/K with increasing temperature. The experiments also show that the surface-emitting spectra are split into several modes because of the restriction from the micro-cavities in gain chips of VECSELs. In the design of VECSEL gain chip, according to the above thermal characteristics of VECSELs, performance of a laser could be improved significantly by prebiasing emission wavelengths of quantum wells and cavity lengths of micro-cavities.
-
-
[1] KELLER U, TROPPER A C. Passively modelocked surface-emitting semiconductor lasers[J]. Physics Reports, 2006, 429(2):67-120.
[2] TROPPER A C, HOOGLANG S. Extended cavity surface-emitting semiconductor lasers[J]. Progress in Quantum Electronics, 2006, 30(1):1-43.
[3] LI F, FALLAHI M, MURRAY J T, et al. Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers[J]. Applied Physics Letters, 2006, 88(2):021105.
[4] KUZNETSOV M, HAKIMI F, SPRAGUE R, et al. High power ( 0.5W CW) diode pumped vertical-external-cavity surface emitting semiconductor lasers with circular TEM00 beams[J]. IEEE Photonics Technology Letters, 1997, 9(8):1063-1065.
[5] KUZNETSOV M, HAKIMI F, SPRAGUE R, et al. Design and characteristics of high-power ( 0.5W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3):561-573.
[6] RUDIN B, RUTZ A, HOFFMANN M, et al. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20W average output power in a fundamental transverse mode[J]. Optics Letters, 2008, 33(22):2719-2721.
[7] SIRBU A, RANTAMAKI A, SAARINEN E J, et al. High performance wafer-fused semiconductor disk lasers emitting in the 1300nm waveband[J]. Optics Express, 2014, 22(24):29398-29403.
[8] HEINEN B, WANG T L, SPARENBERG M, et al. 106W continuous-wave output power from vertical-external-cavity surface-emitting laser[J].Electronics Letters, 2012, 48(9):516-517.
[9] WU Y, NI Y H, DAI T L, et al. Substrate-etched high power external-cavity surface-emitting lasers[J]. Laser Technology, 2012, 36(2):200-203(in Chinese).
[10] ALFORD W J, FETZER G J, EPSTEIN R J, et al. Optically pumped semiconductor lasers for precision spectroscopic applications[J]. IEEE Journal of Quantum Electronics, 2013, 49(8):719-727.
[11] LEINONEN T, RANTA S, TAVAST M, et al. High power (23W) vertical external cavity surface emitting laser emitting at 1180nm[J]. Proceedings of the SPIE, 2013, 8606:867-869.
[12] YAN Ch L, QIN L, NING Y Q, et al. Calculation of energy band structure of GaInAs/GaAs quantum well[J]. Laser Journal, 2004, 25(5):29-31(in Chinese).
[13] ZHANG P, SONG Y R, ZHANG X P, et al. High power vertical-external-cavity surface-emitting laser[J]. Chinese Optics Letters, 2010, 8(4):401-403.
[14] WANG F. Design theory preparation technology and experiment of optically pumped VECSELs[D]. Changchun:Changchun University of Science and Technology, 2014:1-108(in Chinese).
[15] BEDFORD R G, KOLESIK M, CHILLA J L A, et al. Power-limiting mechanisms in VECSELs[J]. Proceedings of the SPIE, 2005,5814:1-10.
[16] FANG Q P, ZHAN X H, LIANG Y P, et al. Acid etching of GaAs substrate of external-cavity surface-emitting laser[J]. Laser Technology, 2014, 38(5):675-678(in Chinese).
[17] YARIV A, YEH P. Photonics optical electronics in modern communications[M].6th ed. Beijing:Electronic Industry Press, 2009:1-795(in Chinese).
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 3
- HTML全文浏览量: 0
- PDF下载量: 4
- 被引次数: 1