高级检索

基于概率密度最小二乘拟合的叶片后缘轮廓

鲍鸿, 曾海涛, 白玉磊, 胡忠, 向志聪, 周延周, 申作春

鲍鸿, 曾海涛, 白玉磊, 胡忠, 向志聪, 周延周, 申作春. 基于概率密度最小二乘拟合的叶片后缘轮廓[J]. 激光技术, 2016, 40(4): 555-559. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.021
引用本文: 鲍鸿, 曾海涛, 白玉磊, 胡忠, 向志聪, 周延周, 申作春. 基于概率密度最小二乘拟合的叶片后缘轮廓[J]. 激光技术, 2016, 40(4): 555-559. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.021
BAO Hong, ZENG Haitao, BAI Yulei, HU Zhong, XIANG Zhicong, ZHOU Yanzhou, SHEN Zuochun. Blade trailing edge contour based on probability density least-square fitting[J]. LASER TECHNOLOGY, 2016, 40(4): 555-559. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.021
Citation: BAO Hong, ZENG Haitao, BAI Yulei, HU Zhong, XIANG Zhicong, ZHOU Yanzhou, SHEN Zuochun. Blade trailing edge contour based on probability density least-square fitting[J]. LASER TECHNOLOGY, 2016, 40(4): 555-559. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.021

基于概率密度最小二乘拟合的叶片后缘轮廓

基金项目: 

广东省自然科学基金资助项目(2014A030313519);广州市科技计划资助项目(2014J4100203)

详细信息
    作者简介:

    鲍鸿(1962-),女,博士,教授,现主要从事激光检测、航空发动机叶片3维轮廓及物体变形测量。E-mail:bhong@gdut.edu.cn

  • 中图分类号: V232.4;TN247

Blade trailing edge contour based on probability density least-square fitting

  • 摘要: 为了解决燃气轮机叶片后缘轮廓的测量和模型化的难题,采用了基于概率密度的最小二乘圆拟合方法,通过对数据重复拟合过程若干次,求得每组的拟合圆心坐标和半径,以概率密度分布的最大值作为最优拟合值。通过数据仿真,对拟合数据误差进行了理论分析和实验验证,验证了该方法的可行性和鲁棒性。结果表明,实现了对叶片后缘轮廓的拟合和数据的参量估计,精度达到0.01mm,求得圆拟合的最优圆心坐标和半径;对于直线段和短圆弧组合的叶片后缘,在不知切点和圆弧方程的情况下,能够对叶片后缘轮廓拟合。此方法对叶片后缘轮廓的高精度测量、加工精度以及参量的设计有着重要的指导意义。
    Abstract: In order to solve the problems for measurement and modeling of gas turbine blade trailing edge contour, a least-square circle fitting method based on probability density was proposed. After several times of fitting data repeatedly, each fitting center coordinate and radius was obtained. The maximum value of probability density distribution was looked as the optimal value. The errors of fitting data were analyzed by data simulation after theoretical analysis and experimental verification. The feasibility and robustness of the method were verified. The results show that the fitting of blade trailing edge contour and the estimation of parameter data are realized. The fitting error is 0.01mm. The optimal center coordinates and radius of circle fitting is obtained. For the blade trailing edge composed of straight line segments and short arcs, the fitting result is effective and accurate in the case of unknowing the point of tangent and arc equation. The method has an important guiding significance to precision measurement, machining accuracy and parameter design of blade trailing edge contour.
  • [1]

    LI H W, SHEN Z Ch, QIN Y H, et al. Application of phase-measurement-profilometry in blade measurement[J]. Journal of Aerospace Power, 2012, 27(2):275-281(in Chinese).

    [2]

    LAI W J, BAO H, BAI Y L, et al. High precision and multiple view point cloud data fusion in the blade three-dimensional profile measurement[J]. Journal of Aerospace Power, 2015, 30(3):665-671(in Chinese).

    [3]

    HUANG W Y. Evaluation and research for roundness error computing with three methods of least square circle[J]. Acta Metrologica Sinica, 1991, 12(1):22-28(in Chinese).

    [4]

    CHERNOV N, LESORT C. Least squares fitting of circles[J]. Journal of Mathematical Imaging and Vision, 2005, 23(3):239-252.

    [5]

    SPATH H. Least-squares fitting by circles[J]. Computing, 1995, 57(2):179-185.

    [6]

    GANDER W, GOLUB G H, STREBEL R. Least-squares fitting of circles and ellipses[J]. BIT Numerical Mathematics, 1994, 34(4):558-578.

    [7]

    AHN S J, RAUH W, WARNECKE H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 2001, 34(12):2283-2303.

    [8]

    KANATANI K, RANGARAJAN P. Hyper least squares fitting of circles and ellipses[J]. Computational Statistics and Data Analysis, 2011, 55(6):2197-2208.

    [9]

    KASA I. A circle fitting procedure and its error analysis[J]. IEEE Transactions on Instrumentation and Measurement, 1976, 25(3):8-14.

    [10]

    MOURA L, KITNEY R. A direct method for least-squares circle fitting[J]. Computer Physics Communications.1991, 64(1):57-63.

    [11]

    WATSON G A. Least squares fitting of circles and ellipses to measured data[J]. BIT Numerical Mathematics, 1999, 39(1):176-191.

    [12]

    CANG G H, YUE J P. Plane fitting of point clouds based on weighted total least square[J]. Laser Technology, 2014, 38(3):307-310(in Chinese).

    [13]

    QIN Y, FU X N, HUANG F. Multi-circle fitting algorithms for laserspot location[J]. Journal of Xi'an University of Science and Technology, 2006, 26(4):519-523(in Chinese).

    [14]

    LIU K, ZHOU F Q, ZHANG G J. Radius constraint least-square circle fitting method and error analysis[J].Journal of OptoelectronicsLaser, 2006, 17(5):604-607(in Chinese).

  • 期刊类型引用(3)

    1. 赵展鹏,张亮,姜丽婷. 基于叶尖定时的失谐叶片-轮盘振动参数辨识仿真. 辽宁工业大学学报(自然科学版). 2020(05): 305-311 . 百度学术
    2. 李玉瑶,张婉怡,刘喆,李美萱,付秀华. S-on-1测量方式下薄膜激光损伤的累积效应. 激光技术. 2018(01): 39-42 . 本站查看
    3. 梁逸卿. 基于激光三维扫描图像的数码版画合理性建模. 激光杂志. 2017(02): 109-112 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 12
出版历程
  • 收稿日期:  2015-05-07
  • 修回日期:  2015-07-09
  • 发布日期:  2016-07-24

目录

    /

    返回文章
    返回