-
利用T矩阵方法计算粒子受力的基本原理是将粒子周围的入射场Einc(r)和散射场Esca(r)都展开如下式所示的矢量球形波函数的叠加,其中入射场的展开系数amn, bmn和散射场的展开系数pmn, qmn可以通过T矩阵联系起来,通过amn, bmn和T矩阵可以得到散射场,进而得到粒子周围的场分布,然后通过麦克斯韦应力张量积分得到粒子的受力。
$ \left\{ \begin{array}{l} \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{E}}_{{\rm{inc}}}}\left( \mathit{\boldsymbol{r}} \right) = \sum\limits_{n = 1}^\infty {\sum\limits_{m = - n}^n {\left[ {{a_{mn}}{\mathit{\boldsymbol{M}}_{{\rm{I}},mn}}\left( {{k_0}\mathit{\boldsymbol{r}}} \right) + } \right.} } }\\ {\left. {{b_{mn}}{\mathit{\boldsymbol{N}}_{{\rm{I}},mn}}\left( {{k_0}\mathit{\boldsymbol{r}}} \right)} \right]} \end{array}\\ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{E}}_{{\rm{sca}}}}\left( \mathit{\boldsymbol{r}} \right) = \sum\limits_{n = 1}^\infty {\sum\limits_{m = - n}^n {\left[ {{p_{mn}}{\mathit{\boldsymbol{M}}_{{\rm{III}},mn}}\left( {{k_0}\mathit{\boldsymbol{r}}} \right) + } \right.} } }\\ {\left. {{q_{mn}}{\mathit{\boldsymbol{N}}_{{\rm{III}},mn}}\left( {{k_0}\mathit{\boldsymbol{r}}} \right)} \right]} \end{array} \end{array} \right. $
(1) 式中, MⅠ, mn,NⅠ, mn,MⅢ, mn,NⅢ, mn为矢量球形波函数[23],其下标中的罗马数字表示分别取第1类和第3类球贝塞尔函数jn和hn(1),k0为入射光在环境中的波数。
T矩阵方法中入射场Einc(r)一般是透镜系统形成的聚焦场。如图 1所示,入射光经过一个高数值孔径的透镜聚焦之后入射到一个双层球形粒子之上,利用Richard-Wolf矢量衍射积分方法以及角谱展开方法将聚焦之后的场展开为一系列平面波的叠加,利用平面波的展开系数[23],可得入射场的展开系数为:
$ \left\{ \begin{array}{l} {a_{mn}} = 2{k_0}f{l_0}{{\rm{i}}^{n - 1}}{\gamma _{mn}}\int_0^{{\theta _{\max }}} {{\rm{d}}\theta } \int_0^{2{\rm{ \mathsf{ π} }}} {\mathit{\boldsymbol{\hat e'}}\left( {\theta ,\varphi } \right)} \cdot {\mathit{\boldsymbol{C}}_{mn}}^ * \left( {\theta ,\varphi } \right) \times \\ \;\;\;\;\;\;\;\;\;A\left( {\theta ,\varphi } \right)\exp \left( {{\rm{i}}\sigma } \right)\exp \left( {{\rm{i}}{k_0}\mathit{\boldsymbol{\hat s}} \cdot \mathit{\boldsymbol{R}}} \right)\sqrt {\cos \theta } \sin \theta {\rm{d}}\varphi \\ {b_{mn}} = - 2{k_0}f{l_0}{{\rm{i}}^n}{\gamma _{mn}}\int_0^{{\theta _{\max }}} {{\rm{d}}\theta } \int_0^{2{\rm{ \mathsf{ π} }}} {\mathit{\boldsymbol{\hat e'}}\left( {\theta ,\varphi } \right)} \cdot {\mathit{\boldsymbol{B}}_{mn}}^ * \left( {\theta ,\varphi } \right) \times \\ \;\;\;\;\;\;\;\;\;A\left( {\theta ,\varphi } \right)\exp \left( {{\rm{i}}\sigma } \right)\exp \left( {{\rm{i}}{k_0}\mathit{\boldsymbol{\hat s}} \cdot \mathit{\boldsymbol{R}}} \right)\sqrt {\cos \theta } \sin \theta {\rm{d}}\varphi \end{array} \right. $
(2) 式中, f为透镜的焦距,l0为入射光振幅的最大值,i为虚数单位,γmn是矢量球形波函数中的一个系数,θmax是出瞳边缘的光线与光轴所形成的夹角,ȇ′为出射光线的偏振状态,ŝ(1, θ, φ)为聚焦之后光线的单位波矢,R是粒子的位矢,Bmn和Cmn是矢量球形波函数中的角向分量[23](上标*表示其共轭),A(θ, φ)为出瞳光线的振幅分布,σ为光束的附加相位。
图 1中, $\mathit{\boldsymbol{\hat \rho }}$和$\mathit{\boldsymbol{\hat \varphi }}$分别为径向和角向的单位矢量,$\mathit{\boldsymbol{\hat \rho }}$′和$\mathit{\boldsymbol{\hat \varphi }}$′分别为经过聚焦之后对应的单位矢量,k为入射光的波矢,θ为光线与光轴的夹角,O为坐标原点,r和R分别为观测点Pv和粒子中心Ps的位矢,环境折射率为n0,粒子外层和内层折射率为n1, n2,外层和内层半径为r1, r2,外层和内层界面为S1和S2。
(2) 式给出了粒子表面入射场的展开系数,为了得到散射场,还需要求得双层球形粒子的T矩阵。双层粒子的T矩阵可以表示为:
$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{T}}_{12}} = \left( { - {\mathit{\boldsymbol{K}}_{1,{\rm{I,I}}}}{\mathit{\boldsymbol{K}}_{1,{\rm{I,III}}}}^{ - 1} + {\mathit{\boldsymbol{K}}_{1,{\rm{III}},{\rm{I}}}}{\mathit{\boldsymbol{K}}_{2,{\rm{I,I}}}}{\mathit{\boldsymbol{K}}_{2,{\rm{I,III}}}}^{ - 1}{\mathit{\boldsymbol{K}}_{1,{\rm{I,III}}}}^{ - 1}} \right) \times }\\ {{{\left( {1 - {\mathit{\boldsymbol{K}}_{1,{\rm{III}},{\rm{III}}}}{\mathit{\boldsymbol{K}}_{2,{\rm{I,I}}}}{\mathit{\boldsymbol{K}}_{2,{\rm{I,III}}}}^{ - 1}{\mathit{\boldsymbol{K}}_{1,{\rm{I,III}}}}^{ - 1}} \right)}^{ - 1}} = }\\ {\left( {{\mathit{\boldsymbol{T}}_1} - {\mathit{\boldsymbol{K}}_{1,{\rm{III}},{\rm{I}}}}{\mathit{\boldsymbol{T}}_2}{\mathit{\boldsymbol{K}}_{1,{\rm{I,III}}}}^{ - 1}} \right){{\left( {1 + {\mathit{\boldsymbol{K}}_{1,{\rm{III}},{\rm{III}}}}{\mathit{\boldsymbol{T}}_2}{\mathit{\boldsymbol{K}}_{1,{\rm{I,III}}}}^{ - 1}} \right)}^{ - 1}}} \end{array} $
(3) 式中,T1和T2为外层界面S1和内层界面S2构成的单一均匀球形粒子的T矩阵,T12是双层粒子的T矩阵,K是一个与T矩阵等大小的矩阵[23],其下标中的第1个阿拉伯数字表示积分界面的标号,后面两个罗马数字表示求解过程中矢量球形波函数的形式,矩阵K由4个子块J1,J2,J3,J4组成:
$ {\mathit{\boldsymbol{K}}_{y,u,v}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{J}}_1}}&{{\mathit{\boldsymbol{J}}_2}}\\ {{\mathit{\boldsymbol{J}}_3}}&{{\mathit{\boldsymbol{J}}_4}} \end{array}} \right],\left( {y = 1,2;u,v = {\rm{I}},{\rm{III}}} \right) $
(4) 在双层球形粒子的情况下,J2≡0,J3≡0,
$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{J}}_{1,mm'nn'}} = {\rm{i}}{\delta _{mm'nn'}}\left[ {{f_v}\left( {{x_y}} \right){{f'}_u}\left( {{n_{y,y - 1}}{x_y}} \right) - } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\frac{1}{{{n_{y,y - 1}}}}{{f'}_v}\left( {{x_y}} \right){f_u}\left( {{n_{y,y - 1}}{x_y}} \right)} \right]\\ {\mathit{\boldsymbol{J}}_{4,mm'nn'}} = {\rm{i}}{\delta _{mm'nn'}}\left[ {\frac{1}{{{n_{y,y - 1}}}}{f_v}\left( {{x_y}} \right){{f'}_u}\left( {{n_{y,y - 1}}{x_y}} \right) - } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {{{f'}_v}\left( {{x_y}} \right){f_u}\left( {{n_{y,y - 1}}{x_y}} \right)} \right] \end{array} \right. $
(5) 式中, δmm′nn′为Kronecker函数(m=m′,且n=n′时取1;否则取0),相对折射率ny, y-1=ny/ny-1(ny和ny-1分别表示第y层和第y-1层介质的绝对折射率),定义参量xy=k0ryny-1/n0(ry表示第y层球形界面的半径),函数fu和fv在各种情况下的形式为:
$ \left\{ \begin{array}{l} {f_u}\left( {{n_{y,y - 1}}{x_y}} \right) = \left\{ \begin{array}{l} {\psi _n}\left( {{n_{y,y - 1}}{x_y}} \right),\left( {u = {\rm{I}}} \right)\\ {\xi _n}\left( {{n_{y,y - 1}}{x_y}} \right),\left( {u = {\rm{III}}} \right) \end{array} \right.\\ {f_v}\left( {{x_y}} \right) = \left\{ \begin{array}{l} {\psi _n}\left( {{x_y}} \right),\left( {v = {\rm{I}}} \right)\\ {\xi _n}\left( {{x_y}} \right),\left( {v = {\rm{III}}} \right) \end{array} \right. \end{array} \right. $
(6) 式中, 函数ψn(z)=zjn(z),ξn(z)=zhn(1)(z),上标“′”表示对函数的自变量求导。将(4)式~(6)式对应的形式代入(3)式可以得到双层球形粒子的T矩阵。
通过双层粒子的T矩阵与入射场的展开系数可求得散射场的展开系数,进一步得到粒子外的场分布,利用麦克斯韦应力张量积分,可以求得粒子的受力F。
$ \begin{array}{*{20}{c}} {\left\langle \mathit{\boldsymbol{F}} \right\rangle = - \frac{1}{2} \times }\\ {{\mathop{\rm Re}\nolimits} \oint\limits_S {\left[ {\frac{1}{2}\left( {\mathit{\boldsymbol{D}} \cdot \mathit{\boldsymbol{E}} + \mathit{\boldsymbol{B}} \cdot \mathit{\boldsymbol{H}}} \right)\mathit{\boldsymbol{I}} - } \right.} }\\ {\left. {\left( {\mathit{\boldsymbol{D}}{\mathit{\boldsymbol{E}}^ * } + \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{H}}^ * }} \right)} \right] \cdot {\rm{d}}\mathit{\boldsymbol{S}}} \end{array} $
(7) 式中, 〈〉表示求时域平均,D, E, B, H分别为电位移矢量、电场强度、磁感应强度、磁场强度,I为单位张量,中括号的第2项为并矢,dS为积分的面积元矢量,上标*表示取相应矢量的共轭。
T矩阵方法计算双层球形粒子的受力
Calculation of trapping force on double-layer spherical particles using T matrix method
-
摘要: 为了分析聚焦光束对多层粒子的捕获效率,结合矢量衍射积分、 T 矩阵方法以及Maxwell应力张量积分,通过理论推导给出了双层球形粒子的 T 矩阵的详细表达式,并对双层球形粒子在聚焦光场中的受力进行了数值计算,详细分析了内层折射率和内层尺寸对光场捕获效率的影响。结果表明,只有内层折射率在一定范围内,聚焦光束对双层球形粒子才具有捕获作用,随着内层折射率增加,最大后向捕获效率先增加后减小至零,对于空心粒子,内层尺寸越大,聚焦光束对粒子的捕获作用越弱,且平面波的捕获作用比高斯光束更强。此双层球形粒子的受力计算可以拓展到多层的复杂粒子的情形。Abstract: In order to analyze the trapping efficiency of multi-layer particles in a focused beam, the T matrix of the double-layer spherical particle was deduced. The trapping force on double-layer spherical particles was numerically calculated by means of the vector diffraction integral combining the T matrix method and the Maxwell stress tensor integral. Effect of the refractive index and size of the inner layer on trapping efficiency was discussed in detail. The focused beam can trap the double-layer spherical particles only when the refractive index of the inner layer is appropriate. The maximum backward trapping efficiency will increase at first and decrease to zero finally when the refractive index increases. For hollow particles, the bigger the hollow is, the weaker the trap is. Besides, the trap formed by plane wave is stronger than Gaussian beam. The calculation method of the force on double-layer spherical particles can be expanded to the case of multilayer complex particles.
-
Key words:
- laser technique /
- optical trapping /
- T matrix /
- double-layer spherical particle
-
-
[1] ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4):156-159. doi: 10.1103/PhysRevLett.24.156 [2] ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5):288-290. doi: 10.1364/OL.11.000288 [3] CHU S. Laser manipulation of atoms and particles[J]. Science, 1991, 253(5022):861-866. doi: 10.1126/science.253.5022.861 [4] BLOCK S M. Making light work with optical tweezers[J]. Nature, 1992, 360(6403):493-495. doi: 10.1038/360493a0 [5] YIN H, WANG M D, SVOBODA K, et al. Transcription against an applied force[J]. Science, 1995, 270(5242):1653-1657. doi: 10.1126/science.270.5242.1653 [6] GRIMBERGEN J A, VISSCHER K, GOMES de MESQUITA D S, et al. Isolation of single yeast cells by optical trapping[J]. Yeast, 1993, 9(7):723-732. doi: 10.1002/(ISSN)1097-0061 [7] WU J G, LI Y M, LU D, et al. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers[J]. Cryoletters, 2009, 30(2):89-95. [8] WEN J D, LANCASTER L, HODGES C, et al. Following translation by single ribosomes one codon at a time[J]. Nature, 2008, 452(7187):598-603. doi: 10.1038/nature06716 [9] BLOCK S M, GOLDSTEIN L S, SCHNAPP B J. Bead movement by single kinesin molecules studied with optical tweezers[J]. Nature, 1990, 348(6299):348-352. doi: 10.1038/348348a0 [10] WEI Y. Measurement of viscosity coefficient of liquid micro-area with laser optical tweezers[J]. Laser Technology, 2016, 40(5):738-741(in Chinese). [11] ASHKIN A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 1992, 61(2):569-582. doi: 10.1016/S0006-3495(92)81860-X [12] HARADA Y, ASAKURA T. Radiation forces on a dielectric sphere in the rayleigh scattering regime[J]. Optics Communications, 1996, 124(5/6):529-541. [13] CHEN J, NG J, WANG P, et al. Analytical partial wave expansion of vector bessel beam and its application to optical binding[J]. Optics Letters, 2010, 35(10):1674-1676. doi: 10.1364/OL.35.001674 [14] CHEN J, NG J, WANG P, et al. Analytical partial wave expansion of vector bessel beam and its application to optical binding:erratum[J]. Optics Letters, 2011, 36(7):1243-1243. doi: 10.1364/OL.36.001243 [15] YANG M, WU Y, REN K F, et al. Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order bessel vortex beams using mlfma[J]. Optics Express, 2016, 24(24):27979-27992. doi: 10.1364/OE.24.027979 [16] MILNE G, DHOLAKIA K, MCGLOIN D, et al. Transverse particle dynamics in a bessel beam[J]. Optics Express, 2007, 15(21):13972-13987. doi: 10.1364/OE.15.013972 [17] WATERMAN P C. Matrix formulation of electromagnetic scattering[J]. Proceedings of the IEEE, 1965, 53(8):805-812. doi: 10.1109/PROC.1965.4058 [18] WATERMAN P C. Symmetry, unitarity, and geometry in electromagnetic scattering[J]. Physical Review, 1971, D3(4):825-839. [19] PETERSON B, STROM S. T-matrix formulation of electromagnetic scattering from multilayered scatterers[J]. Physical Review, 1974, D10(8):2670-2684. [20] YAN Sh H, YAO B L. Transverse trapping forces of focused gaussian beam on ellipsoidal particles[J]. Journal of the Optical Society of America, 2007, B24(7):1596-1602. [21] BAREIL P B, SHENG Y. Angular and position stability of a nanorod trapped in an optical tweezers[J]. Optics Express, 2010, 18(25):26388-26398. doi: 10.1364/OE.18.026388 [22] NIEMINEN T A, LOKE V L Y, STILGOE A B, et al. Optical tweezers computational toolbox[J]. Journal of Optics, 2007, A9(8):S196-S203. [23] MISHCHENKO M I, TRAVIS L D, LACIS A A, Scattering, absorption, and emission of light by small particles[M].New York, USA:Cambridge University Press, 2002:115-190. [24] ZHAN Q. Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams[J]. Journal of Optics, 2003, A5(3):229-232. [25] KAWAUCHI H, YONEZAWA K, KOZAWA Y, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam[J]. Optics Letters, 2007, 32(13):1839-1841. doi: 10.1364/OL.32.001839