Face recognition based on semi-supervised dimensionality reduction and sparse representation
-
摘要: 由于人脸图像数据的维数都较高,将稀疏表示分类用于人脸识别时计算量很大,为了提高人脸识别系统的效率,提出了一种融合半监督降维和稀疏表示的人脸识别方法。首先利用半监督降维算法对图像进行降维处理,在较低的维数空间快速取得较高的识别率,然后利用稀疏表示分类进行人脸识别,取得比传统的最近邻分类器更高的识别率,最后在ORL人脸库上进行实验验证。结果表明,利用该融合算法可快速有效地提高人脸图像的识别效果。Abstract: Because of high dimensions of face image data and large calculation of sparse representation classification for face recognition, in order to improve the efficiency of face recognition system, a new face recognition method based on semi-supervised dimensionality reduction(SSDR) and sparse representation (SR) was proposed. Firstly, SSDR algorithm was used to reduce the image dimensions and achieve higher recognition rate in the lower dimension space quickly. Secondly, SR classification can achieve a higher recognition rate than the nearest neighbor classification in face recognition. And then, the experimental verification was demonstrated on ORL face database. The results show that the fusion algorithm can improve the recognition performance of face images quickly and effectively.
-
-
[1] HUA G,YANG M S. Introduction to the special section on real word face recognition[J].Pattern Analysis and Machine Intelligence,2011,33(10): 1921-1924.
[2] WRIGHT J,YANG A,GANESH A. Robust face recognition via sparse representation [J]. Pattern Analysis and Machine Intelligence, 2009,31(2): 210-227.
[3] HUANG W L,YIN H J.On nonlinear dimensionality reduction for face recognition [J]. Image and Vision Computing,2012,30(4):355-366.
[4] GAO Y,WANG F H,GUO Sh X.Application of improved wavelet transform algorithm in image fusion[J].Laser Technology,2013,37(5): 690-695(in Chinese).
[5] CHEN Sh G, ZHANG D Q.Experimental comparisons of semi-supervised dimensional reduction methods[J]. Journal of Software,2011,22(1):28-43.
[6] YAN S,BOUAZIZ S, LEE D W.Semi-supervised dimensionality reduction for analyzing high-dimensional data with constraints[J]. Neurocomputing,2012,76(1):114-124.
[7] HUAN K K.Regularized marginal fisher analysis and sparse representation for face recognition[J]. Journal of Computer Applications, 2013,33(6):1723-1726(in Chinese).
[8] GU X H.Visual perception and edge preserving illumination invariant face recognition[J].Acta Electronica Sinica,2013,41(8):1500-1504(in Chinese).
[9] ZUO Y Y,GAO B.Robust hierarchical framework for image classification via sparse representation[J].Tsinghua Science and Technology,2011,1(1):13-21.
[10] YANG M, ZHANG L, YANG J, et al.Metaface learning for sparse representation based face recognition[C]//2010 17th IEEE International Conference on Image Processing.New York,USA:IEEE,2010: 1601-1604.
[11] HU H F.Orthogonal neighbourhood preserving discriminant analysis for face recognition[J].Pattern Recognition,2008,41(6):2045-2054.
[12] TURK M, PENTLAND A. Eigen-faces for recognition [J]. Jounal of Cognitive Neuroscience,1991,3(1):71-86.
-
期刊类型引用(4)
1. 程鸿芳,祝军. 基于改进的稀疏描述和降维人脸识别方法. 绵阳师范学院学报. 2023(11): 89-96 . 百度学术
2. 王一炜,孙楠. 基于激光扫描的面部智能识别人机交互界面. 激光杂志. 2019(04): 161-166 . 百度学术
3. 于妍,韩冬. 基于局部二元模式直方图的红外人脸识别. 激光杂志. 2016(05): 40-43 . 百度学术
4. 李立红,许元飞. 曲波系数加权融合的光照变化人脸识别研究. 激光杂志. 2016(07): 35-38 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 8
- 被引次数: 7