高级检索

NiCr-MoS2-M耐磨自润滑涂层的激光制备及表征

童照鹏, 孙桂芳, 房晓玉, 黄学祥

童照鹏, 孙桂芳, 房晓玉, 黄学祥. NiCr-MoS2-M耐磨自润滑涂层的激光制备及表征[J]. 激光技术, 2016, 40(2): 166-170. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.004
引用本文: 童照鹏, 孙桂芳, 房晓玉, 黄学祥. NiCr-MoS2-M耐磨自润滑涂层的激光制备及表征[J]. 激光技术, 2016, 40(2): 166-170. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.004
TONG Zhaopeng, SUN Guifang, FANG Xiaoyu, HUANG Xuexiang. Laser preparation and characterization of NiCr-MoS2-M self-lubricating wear-resistant coating[J]. LASER TECHNOLOGY, 2016, 40(2): 166-170. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.004
Citation: TONG Zhaopeng, SUN Guifang, FANG Xiaoyu, HUANG Xuexiang. Laser preparation and characterization of NiCr-MoS2-M self-lubricating wear-resistant coating[J]. LASER TECHNOLOGY, 2016, 40(2): 166-170. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.004

NiCr-MoS2-M耐磨自润滑涂层的激光制备及表征

基金项目: 

国家自然科学基金资助项目(51201070);高等学校博士学科点专项科研基金资助项目(20113227120006)

详细信息
    作者简介:

    童照鹏(1991-),男,硕士研究生,现主要从事激光表面强化技术的研究。

    通讯作者:

    孙桂芳,E-mail:gfsun@seu.edu.cn

  • 中图分类号: TG665

Laser preparation and characterization of NiCr-MoS2-M self-lubricating wear-resistant coating

  • 摘要: 为了提高挤出机螺杆表面的耐磨损性能,采用激光熔覆技术在38CrMoAl钢表面制备NiCr-MoS2-M(M为CeO2-TiC-Cr3C2-V)耐磨自润滑复合涂层。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)及附带的能谱仪分析了涂层的物相组成及显微组织,采用显微硬度计测试了涂层的显微硬度分布,并在室温条件下测试了上述涂层的干滑动摩擦学性能,取得了相关的数据。结果表明,XRD测试结果显示强化层主要由FeNi,Ni3Fe和Cr-Ni-Fe-C固溶体组成;用SEM观察发现强化层由固溶体枝晶、富Cr共晶和未熔MoS2颗粒组成。涂层中的显微硬度为313.7HV,约为基体显微硬度(332.6HV)的94.32%;摩擦系数为0.513,约为基体摩擦系数(0.315)的1.63倍;磨损量为58.56110-3mm3,约为基体磨损量(4.9110-3mm3)的11.9倍。这一结果对进一步优化工艺参量,以提高强化层的综合力学性能是有帮助的。
    Abstract: To improve the wear resistance of extruder screws, self-lubricating wear-resistant NiCr-MoS2-M coating was fabricated on 38CrMoAl substrates by laser cladding. Phase composition and microstructures were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Microhardness was measured with a microhardness tester. Tribological properties of the fabricated composite coatings were evaluated under dry sliding condition at room-temperature. The related data were obtained through theoretical analysis and experimental verification. XRD results show that the reinforced layer is composed of FeNi,Ni3Fe and Cr-Ni-Fe-C solid solution. According to SEM observation, the reinforced layer consists of solid solution dendrites, eutectic rich in Cr and undissolved MoS2 particles. The microhardness of the coating is about 313.7HV, about 94.32% of the matrix (332.6HV). Friction coefficient is about 0.513, about 1.63 times of the matrix (0.315). Wear loss of coatings is about 58.56110-3mm3, about 11.9 times of the matrix (4.9110-3mm3). This result is helpful for the further optimization of process parameters to improve the comprehensive mechanical properties of the reinforced layers.
  • [1]

    WANG C T, ZHAO L P, GU P C, et al. Defect analysis and preventing methods of 38CrMoAlA screw[J]. Journal of Zhejiang Ocean University (Natural Science Edition), 2007, 26(3):300-302(in Chinese).

    [2]

    LI G S. The manufacturing domestically of extruder screw rod part[J]. Science Technology in Chemical Industry, 2006, 14(5):22-25(in Chinese).

    [3]

    YANG Z J. Influencing factors of the wear of conical twin screw extruders and the method to reduce wear[J]. World Plastics, 2005, 23(5):37-41(in Chinese).

    [4]

    ZHAO P, XIE F Z, SUN W S. Fundamentals of material science[M]. Harbin:Harbin Institute of Technology Press, 1999:238-239(in Chinese).

    [5]

    LIN W S, ZHANG G J, WANG H P. Research progress of laser cladding technology[J]. Heat Treatment Technology and Equipment, 2008, 29(2):1-3(in Chinese).

    [6]

    WANG W F, SUN F J, WANG M C. Study of Cu-base coating on aluminum alloy by laser cladding[J]. Laser Technology, 2008, 32(3):240-243(in Chinese).

    [7]

    HUANG D W, LI H B. Effects of laser power on the 38CrMoAl surface properties of laser cladding layer[J]. Journal of Liaoning Technical University (Natural Science Edition), 2000, 19(5):539-542(in Chinese).

    [8]

    DING X Y, SUN X L. Research on technology of laser cladding Ni60 alloy on 38CrMoAl steel surface[J]. Foundry Technology, 2012, 32(11):1528-1531(in Chinese).

    [9]

    SHAN J G, DING J C, REN J L. Microstructure and strengthening mechanism of light beam cladding layer with iron-based self-fluxing alloy powder[J]. Transactions of the China Welding Institution, 2001, 22(4):1-4(in Chinese).

    [10]

    HUANG C B, DU L Z, ZHANG W G. Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2-BaF2-CaF2 composite coatings[J]. Journal of Alloys and Compounds, 2009,479(1/2):777-784.

    [11]

    ZHANG X F, WANG A H. Microstructure and properties of laser clad nano-Ni encapsulated h-BN/CaF2 composite coating[J]. Journal of Huazhong University of Science Technology(Natural Science Edition), 2009, 37(1):9-13(in Chinese).

    [12]

    LIU X B, YU G, GUO J, et al. Study on microstructure and wear resistance of plasma jet clad -Cr7C3 composite coating[J]. Transactions of Materials and Heat Treat Mental, 2006, 27(12):114-117(in Chinese).

    [13]

    CHEN Z Y, XU J, LIU W J. Study on microstructure and wear behaviors of MoS2/TiC/Ni composite wear-resistant coating by laser cladding[J]. Transactions of Materials and Heat Treat Mental, 2007, 28(s1):253-258(in Chinese).

    [14]

    ZHANG D D, SHI Y, LIU J, et al. Research on controlling the crack in laser cladding of high hardness coating[J].Applied Laser, 2014, 34(1):1-8(in Chinese).

    [15]

    WANG X, KWON P Y, SCHROCK D, et al. Friction coefficient and sliding wear of AlTiN coating under various lubrication conditions[J]. Wear, 2013, 304:67-76.

  • 期刊类型引用(2)

    1. 李凌宇,石岩,李镇. 激光沉积铁基涂层微观组织与耐磨性能研究. 长春理工大学学报(自然科学版). 2018(04): 25-30 . 百度学术
    2. 李博雅,曹志强. 金属基固体自润滑复合涂层及其制备技术研究进展. 表面技术. 2017(09): 32-38 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 6
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-03-16
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回