高级检索

Nd:YAG连续激光诱导下硅中钛过饱和掺杂研究

范宝殿, 陈蓉, 庞爱锁, 陈朝

范宝殿, 陈蓉, 庞爱锁, 陈朝. Nd:YAG连续激光诱导下硅中钛过饱和掺杂研究[J]. 激光技术, 2016, 40(2): 205-208. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.011
引用本文: 范宝殿, 陈蓉, 庞爱锁, 陈朝. Nd:YAG连续激光诱导下硅中钛过饱和掺杂研究[J]. 激光技术, 2016, 40(2): 205-208. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.011
FAN Baodian, CHEN Rong, PANG Aisuo, CHEN Chao. Study on Si doped with supersaturated Ti induced by continuous wave Nd:YAG laser[J]. LASER TECHNOLOGY, 2016, 40(2): 205-208. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.011
Citation: FAN Baodian, CHEN Rong, PANG Aisuo, CHEN Chao. Study on Si doped with supersaturated Ti induced by continuous wave Nd:YAG laser[J]. LASER TECHNOLOGY, 2016, 40(2): 205-208. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.011

Nd:YAG连续激光诱导下硅中钛过饱和掺杂研究

详细信息
    作者简介:

    范宝殿(1976-),男,博士研究生,现主要从事第三代太阳电池的研究。

    通讯作者:

    陈朝,E-mail:cchen@xmu.edu.cn

  • 中图分类号: TN248.1+3;TN305.3

Study on Si doped with supersaturated Ti induced by continuous wave Nd:YAG laser

  • 摘要: 为了在硅中掺入过饱和的过渡金属杂质,采用自行设计的线形大功率Nd:YAG激光辐照表面溅射钛的硅片,对辐照后样品进行了俄歇电子能谱测试,利用2维热力学模型,对连续激光扫描的过程进行了热力学模拟。结果表明,硅中的钛掺杂浓度远高于钛在硅中的固溶度,钛的最高浓度在表面下方一定距离处;硅片中的最高温度并不在硅的表面,温度分布导致了钛的分布不在表面;模拟结果与实验结果吻合得较好。线形连续激光能够通过对材料表面扫描辐照的方式进行加工,实现过饱和掺杂。
    Abstract: In order to prepare Si with supersaturated transition metal, a self-designed linear high power Nd:YAG continuous wave laser was used to irradiate a Si wafer sputtered a layer of Ti. Then the sample was measured by Auger electron spectroscopy and the thermal field was simulated based on the 2-D thermodynamic model. The experimental results indicate that the concentration of Ti in Si is much larger than the solid solubility of Ti in Si and the position of the maximum concentration of the Ti is below the surface of the sample. The maximum temperature is not at the top surface of the sample. Temperature distribution directly leads to the maximum temperature of Si wafer below the top surface of the sample. The simulation results are in good agreement with the experiment results. The saturated transition metal can be supersaturated by irradiating and scanning the material surface with a linear continuous wave laser.
  • [1]

    LIU Y D, YAO Zh J. Progress of YAG ceramic laser[J]. Laser Technology, 2013, 27(3):326-329(in Chinese).

    [2]

    BRANDT M, SCOTT D A, EMMS S B. Laser cladding with a pulsed Nd:YAG laser and optical fibers[J]. Journal of Laser Applications, 1997,9(2):67-75.

    [3]

    VILAR R. Laser cladding[J].Journal of Laser Applications,1999,11(2):64-79.

    [4]

    DUAN G P, CHEN J L, ZHOU D R, et al.Crystallization of amorphous silicon based on excimer laser[J]. Laser Technology, 2013, 37(2):151-154(in Chinese).

    [5]

    WU D J, ZHANG T W, MA G Y, et al. Influence of welding parameters on the morphology of Fe-Ni alloy with continuous wave YAG laser[J]. Chinese Journal of Lasers, 2013,40(3):0303003(in Chinese).

    [6]

    CAI Zh H, TIAN H T, CHEN Ch, et al. Doping of Zn into InP induced by YAG continuous wave laser[J]. Chinese Journal of Quantum Electronics, 2002,19(5):467-470(in Chinese).

    [7]

    XUE Zh Q, HUANG Sh R, ZHANG B P,et al. Laser-induced Zn doping in GaN based light-emitting diode[J]. Applied Physics Letters, 2010, 96(14):141101.

    [8]

    CHEN Ch, PANG A S. A laser of purify method to purify the multi-crystalline:China 201110202745[P]. 2013-05-08(in Chinese).

    [9]

    LUQUE A, MART A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Physical Review Letters, 1997, 78(26):5014-5017.

    [10]

    LUQUE A, MART A, ANTOLN E, et al.Intermediate bands versus levels in non-radiativerecombination[J]. Physica, 2006, B382(1/2):320-327.

    [11]

    LUQUE A, MART A. Increasing the efficiency of ideal solar cells by photon induced transitionsat intermediate levels[J]. Physical Review Letters, 1997, 78(26):5014-5017.

    [12]

    OLEA J, TOLEDANO-LUQUE M, PASTOR D,et al. Titanium doped silicon layers with very high concentration[J].Journal of Applied Physics, 2008, 104(1):016105.

    [13]

    ZHOU Y R, LIU F Zh, ZHU M F, et al. Insulator-to-metal transition in heavily Ti-doped silicon thin film[J]. Applied Physics Letters,2013, 102(22):222106.

    [14]

    RECHT D, SMITH M J, CHARNVANICHBORIKARN S, et al. Supersaturating silicon with transition metals by ion implantationand pulsed laser melting[J]. Journal of Applied Physics, 2013,114(12):124903.

    [15]

    CHEN Ch, FAN B D, CAI L H. A type of crystalline Si material with aintermediate band doped by titanium doping and its preparation method:China. 201310289506[P].2013-10-02(in Chinese).

    [16]

    MATHIOT D, BARBIER D. Solubility enhancement of metallic impurities in silicon by rapid thermal annealing[J].Journal of Applied Physics, 1991,69(7):3878.

    [17]

    HOCINE S,MATHIOT D.Titanium diffusion in silicon[J].Applied Physics Letters,1988, 53(14):1269-1271.

    [18]

    PRAKASH C. Thermal conductivity variation of silicon with temperature[J]. Microelectronics Reliability, 1978, 18(4):333-334.

    [19]

    MORITA K,MIKI T.Thermodynamics of solar-grade-silicon refining[J]. Intermetallics, 2003,11(11/12):1111-1117.

  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 2
出版历程
  • 收稿日期:  2015-02-03
  • 修回日期:  2015-02-12
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回