高级检索

基于SPR增强的开放式悬挂芯光纤集成芯片

谭绪祥, 王冠军, 王志斌

谭绪祥, 王冠军, 王志斌. 基于SPR增强的开放式悬挂芯光纤集成芯片[J]. 激光技术, 2016, 40(2): 209-212. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.012
引用本文: 谭绪祥, 王冠军, 王志斌. 基于SPR增强的开放式悬挂芯光纤集成芯片[J]. 激光技术, 2016, 40(2): 209-212. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.012
TAN Xuxiang, WANG Guanjun, WANG Zhibin. Opened suspended core fiber chip based on surface plasma resonance enhancement mechanism[J]. LASER TECHNOLOGY, 2016, 40(2): 209-212. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.012
Citation: TAN Xuxiang, WANG Guanjun, WANG Zhibin. Opened suspended core fiber chip based on surface plasma resonance enhancement mechanism[J]. LASER TECHNOLOGY, 2016, 40(2): 209-212. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.012

基于SPR增强的开放式悬挂芯光纤集成芯片

基金项目: 

国家自然科学基金资助项目(61405127);山西省青年基金资助项目(2014021023-1);中国博士后科学基金资助项目(2014M562202)

详细信息
    作者简介:

    谭绪祥(1987-),男,硕士研究生,现主要从事光传感与光电探测方面的研究。

    通讯作者:

    王冠军,E-mail:wangguanjun@163.com

  • 中图分类号: TN253

Opened suspended core fiber chip based on surface plasma resonance enhancement mechanism

  • 摘要: 为了有效提升光纤表面等离子体共振(SPR)传感器场增强效果的响应速度和场增强特性,采用悬挂芯光纤结合表面等离子体共振增强检测机理来提高表面场增强程度,提出了一种新型的光纤SPR-表面场增强芯片结构。采用有限元理论分析了上述结构的光场特性,由分析可知,当薄膜层在40nm~50nm附近时存在比较强的场增强;场增强程度与激发SPR共振波长密切相关;而缩小包层厚度、降低纤芯折射率对比度也有利于大幅度增加场增强强度,但半径和包层厚度变化对穿透深度几乎没有影响。结果表明,优化后的光纤芯片具有较高的场增强效果。该研究为高灵敏、快速流体检测应用提供了一种解决思路。
    Abstract: For solving the problems of low surface intensity enhancement and slow response speed of fiber surface plasma resonance (SPR) sensors, a new type of optical fiber SPR-induced surface enhancement chip structure was proposed by using the mechanism of surface plasma resonance to improve the surface field enhancement degree. The characteristics of the proposed chip structure were analyzed based on the finite element method. When Au film layer thickness was near 40nm~50nm, a stronger field enhancement appeared. The degree of field enhancement was closely related with the transmitting wavelength. Reduction of cladding thickness, core diameter and refractive index contrast could increase the degree of field intensity enhancement, but radius and thickness of cladding had almost no effect on penetration depth. The results show that a good surface enhancement effort is feasible after optimization. The study could be beneficial for the application of fluid testing with high sensitivity and rapidity.
  • [1]

    WAN M, LUO P F, JIN J Y, et al. Fabrication of localized surface plasmon resonance fiber probes using ionic self-assembled gold nanoparticles[J]. Sensors, 2010, 10(7):6477-6487.

    [2]

    FU Y L, FU J,WU Y C, et al. Development and application of surface plasmon resonance sensor technique[J]. Laser Journal, 2006, 27(6):15-17(in Chinese).

    [3]

    SLAVK R, HOMOLA J, ?TROK J. Miniaturization of fiber optic surface plasmon resonance sensor[J]. Sensors and Actuators, 1998, B51(1/3):311-315.

    [4]

    YUN H, MAUNG K K O, SVETLANA S, et al. Photonic crystal fiber as an optofluidic platform for surface-enhanced raman scattering[J]. Proceedings of the SPIE, 2010, 7839:783908.

    [5]

    LIU Y, XU Sh P, TANG B, et al. Note:simultaneous measurement of surface plasmon resonance and surface-enhanced Raman scattering[J]. Review of Scientific Instruments, 2010, 81(3):036105.

    [6]

    LISCIDINI M, GALLI M, PATRINI M, et al. Enhancement of light-matter interaction using surface states in photonic crystal structures[J]. Proceedings of the SPIE, 2010, 7608:76080W.

    [7]

    LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287):392-395.

    [8]

    GUAN Ch Y, YUAN L B. Surface plasmon resonance refractive index fiber sensor with hole assisted structure[J]. Proceedings of the SPIE, 2011, 7753:775310.

    [9]

    HASSANI A, SKOROBOGATIY M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Optics Express, 2006, 14(24):11614-11621.

    [10]

    WANG A N, DOCHERTY A, KUHLMEY B T, et al. Side-hole fiber sensor based on surface plasmon resonance[J]. Optics Letters, 2009, 34(24):3890-3892.

    [11]

    LIN H Y, TSAI W H, TSAO Y Ch, et al. Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light[J]. Applied Optics, 2007, 46(5):800-806.

    [12]

    JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review, 1972, B6(12):4370-4379.

    [13]

    WEBER M J. Hand book of optical materials[M]. London,UK:CRC Press LLC, 2003:99-100.

    [14]

    CHABOT V, MIRON Y, GRANDBOIS M, et al. Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth[J].Sensors and Actuators, 2012,B174(1):94-101.

    [15]

    SHAVKAT N, VLADIMIR M M. Self-referencing SPR-biosensors based on penetration difference of evanescent waves[J].Biosensors Bioelectronics, 2011, 28(1):263-269.

    [16]

    HAUTAKORPI M, MATTINEN M, LUDVIGSEN H. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber[J]. Optics Express, 2008, 16(12):8427-8432.

  • 期刊类型引用(5)

    1. 张秋慧, 王平秋, 韩宗强. 激光聚焦位置对金纳米颗粒光致超声信号的影响. 激光技术. 2019(03): 417-420 . 本站查看
    2. 刘星麟, 全磊, 刘晋荣, 安永泉, 张晶, 王冠军. 一种开放性悬芯光纤SPR传感器结构设计与性能优化. 中北大学学报(自然科学版). 2018(04): 456-460 . 百度学术
    3. 邹璐, 李慧明, 菅傲群, 王雷阳. 基于SPR光谱分析的液体折射率计. 激光技术. 2018(03): 357-361 . 本站查看
    4. 王海娜, 徐艳华. 基于硅基的新型传感器研究. 实验室研究与探索. 2018(06): 76-79 . 百度学术
    5. 刘瑾, 杨海马. 参量变化对长程表面等离子体波特性的影响. 激光技术. 2017(02): 221-224 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 5
出版历程
  • 收稿日期:  2015-01-13
  • 修回日期:  2015-03-15
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回