高级检索

光学差分参量放大布里渊时域分析优化研究

秦祖军, 梁国令, 张文涛, 叶松, 熊显名

秦祖军, 梁国令, 张文涛, 叶松, 熊显名. 光学差分参量放大布里渊时域分析优化研究[J]. 激光技术, 2016, 40(2): 232-236. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.017
引用本文: 秦祖军, 梁国令, 张文涛, 叶松, 熊显名. 光学差分参量放大布里渊时域分析优化研究[J]. 激光技术, 2016, 40(2): 232-236. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.017
QIN Zujun, LIANG Guoling, ZHANG Wentao, YE Song, XIONG Xianming. Optimization of Brillouin optical time-domain analysis based on optical differential parametric amplification[J]. LASER TECHNOLOGY, 2016, 40(2): 232-236. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.017
Citation: QIN Zujun, LIANG Guoling, ZHANG Wentao, YE Song, XIONG Xianming. Optimization of Brillouin optical time-domain analysis based on optical differential parametric amplification[J]. LASER TECHNOLOGY, 2016, 40(2): 232-236. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.017

光学差分参量放大布里渊时域分析优化研究

基金项目: 

广西自然科学基金资助项目(2013GXNSFBA019269;2014GXNSFAA118389);桂林电子科技大学广西信息科学实验中心资助项目(20130382);广西自动检测技术与仪器重点实验室资助项目(YQ14107)

详细信息
    作者简介:

    秦祖军(1978-),男,博士,现主要从事非线性光纤光学的研究。E-mail:junqinzu@sina.com

  • 中图分类号: O437;TP212.1+4

Optimization of Brillouin optical time-domain analysis based on optical differential parametric amplification

  • 摘要: 为了优化设计基于光学差分参量放大的布里渊光时域分析抽运的脉冲编码形式以及斯托克斯光与反斯托克斯光脉宽差,采用微扰法和小信号近似法,获得了探测光与斯托克斯光脉冲、反斯托克斯光脉冲在较小作用区域内的脉冲响应,对其性能进行了理论分析与数值验证。结果表明,相位斯托克斯光脉冲可有效压缩布里渊增益谱宽,提高布里渊信号信噪比;当斯托克斯光与反斯托克斯光传感脉冲脉宽差为8ns时,探测光布里渊增益最大。这一结果对进一步分析基于光学差分参量放大的布里渊光时域分析系统性能以及开展相关实验研究是有帮助的。
    Abstract: In order to optimize pump pulse formats of Brillouin optical time-domain analysis based on optical differential parametric amplification (ODPA-BOTDA) and pulse-width difference between Stokes pulse and anti-Stokes pulse, by using perturbation method and small signal approximation, pulse response of probe light with Stokes and anti-Stokes pulses in the small region was obtained. After theoretical analysis and numerical verification of the performances, the results show that Stokes pulse with -phase can effectively compress Brillouin gain spectrum width and increase Brillouin signal-to-noise ratio. Meanwhile, the maximum Brillouin gain is achieved when an optimized pulse-width is 8ns. The study would be helpful for the investigation of ODPA-BOTDA in the subsequent research.
  • [1]

    LI H, LI Y Q, WANG H, et al. Advances in the research on Brillouin-based optical fiber sensors with centimeter resolution[J]. Optical Communication Technology, 2012,36(6):10-13(in Chinese).

    [2]

    KE T B, LIN L, LI Y Q, et al. Study on denoising method of Brillouin optical time domain reflectometry signal of submarine cable[J]. Laser Technology, 2014, 38(3):311-315(in Chinese).

    [3]

    SOTO M A, CHIN S, THEVENAZ L. Double-pulse Brillouin distributed optical fiber sensors:analytical model and experimental validation[C]//OFS201222nd International Conference on Optical Fiber Sensor. Edinburgh,UK:International Society for Optics and Photonics, 2012:842124.

    [4]

    LI Y, BAO X Y, DONG Y, et al. A novel distributed brillouin sensor based on optical differential parametric amplification[J]. Journal of Lightwave Technology, 2010, 28(18):2621-2626.

    [5]

    YIN C Q, TIAN H, LI Y Q, et al. Design of ultrahigh-speed square wave pulser in a Brillouin sensing system[J]. Laser Technology, 2014, 38(5):679-683(in Chinese).

    [6]

    FOALENG S M, TUR M, BEUGNOT J C, et al. High spatial and spectral resolution long-range echoes[J]. Journal of Lightwave Technology, 2010, 28(20):2993-3003.

    [7]

    KALOSHA V P, PONOMATEV E A, CHEN L, et al. How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses[J]. Optics Express, 2006, 14(6):2071-2078.

    [8]

    MIZUNO Y, ZOU W, HE Z, et al. Proposal of Brillouin optical correlation-domain reflectometry[J]. Optics Express, 2008, 16(16):12148-12153.

    [9]

    KISHIDA K, LI C H, MIZUTANI T. 2cm spatial resolution Brillouin distributed sensing system using PPP-BOTDA method[J]. Institute of Materials Engineering, 2009, 33(3):23-26.

    [10]

    LI W, BAO X Y, LI Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26):21616-21625.

    [11]

    SOTO M A, TAKI M, BOLOGNINI G, et al. Optimization of a DPP-BOTDA sensor with 25cm spatial resolution over 60km standard single-mode fiber using Simplex codes and optical pre-amplification[J]. Optics Express, 2012, 20(7):6860-6869.

    [12]

    BAO X Y, CHEN L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4):4152-4187.

    [13]

    CHARLES J B, TUR M, FOALENG S M, et al. Distributed Brillouin sensing with sub-meter spatial resolution-modeling and processing[J]. Optics Express, 2011,19(8):7381-7397.

    [14]

    THEVENAZ L, BEUGNOT J C. General analytical model for distributed Brillouin sensors with sub-meter spatial resolution[C]//20th International Conference on Optical Fibre Sensors. Edinburgh,UK:International Society for Optics and Photonics, 2009:75036A.

    [15]

    FOALENG S M. Brillouin echoes for advanced distributed sensing in optical fibres[D]. Lausanne,Switzerland:cole Polytechnique Fdrale de Lausanne, 2011:97-120.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-02-01
  • 修回日期:  2015-03-22
  • 发布日期:  2016-03-24

目录

    /

    返回文章
    返回