高级检索

基于灰度共生矩阵的激光散斑评价方法

白可, 贺锋涛, 张敏, 孙力

白可, 贺锋涛, 张敏, 孙力. 基于灰度共生矩阵的激光散斑评价方法[J]. 激光技术, 2016, 40(4): 479-482. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.005
引用本文: 白可, 贺锋涛, 张敏, 孙力. 基于灰度共生矩阵的激光散斑评价方法[J]. 激光技术, 2016, 40(4): 479-482. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.005
BAI Ke, HE Fengtao, ZHANG Min, SUN Li. Evaluation method of laser speckle based on gray level co-occurrence matrix[J]. LASER TECHNOLOGY, 2016, 40(4): 479-482. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.005
Citation: BAI Ke, HE Fengtao, ZHANG Min, SUN Li. Evaluation method of laser speckle based on gray level co-occurrence matrix[J]. LASER TECHNOLOGY, 2016, 40(4): 479-482. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.005

基于灰度共生矩阵的激光散斑评价方法

基金项目: 

国家自然科学基金资助项目(61201193)

详细信息
    作者简介:

    白可(1989-),女,硕士研究生,主要从事激光成像方面的研究

    通讯作者:

    贺锋涛,E-mail:hefengtao@xupt.edu.cn

  • 中图分类号: TN249

Evaluation method of laser speckle based on gray level co-occurrence matrix

  • 摘要: 为了抑制激光成像中的散斑噪声,采用灰度共生矩阵构建了激光显微散斑分析评价系统。系统采用波长为405nm的激光作为显微系统光源,利用电压驱动音圈电机振动样品对激光散斑噪声大小进行控制,同时采用CCD图像传感器采集不同驱动电压下的激光散斑噪声。通过对散斑噪声的角二阶矩、对比度、熵和逆差距特征参量的分析,较好地表征了激光散斑噪声的变化。结果表明,灰度共生矩阵方法可对激光显微成像中的散斑进行评价。
    Abstract: In order to suppress speckle noise in laser imaging, a laser microscopic speckle analysis and evaluation system was built by using the gray level co-occurrence matrix. In this system, a 405nm wavelength laser was used as light source of the microscopic system and the vibration of an sample driven by a voice coil motor through voltage was used to control the size of laser speckle noise. At the same time, a CCD image sensor was used to collect laser speckle noise under different driving voltages. Through analyzing the characteristic parameters such as angular second moment, contrast, entropy and inverse difference moment of laser speckle noise, the characteristics of laser speckle noise were appropriately characterized. The results show that the gray level co-occurrence matrix method can be used to evaluate the speckle in laser microscopic imaging.
  • [1]

    JEONG Y J, PYO Y, IWASHITA Y, et al. High-precision three-dimensional laser measurement system by cooperative multiple mobile robots[C]//System Integration, 2012 IEEE/SICE International Symposium. New York,USA:IEEE,2012:198-205.

    [2]

    TIAN Z H, LIU W Q, LI X, et al. Speckle contrast reduction in laser display[J].Optics and Precision Engineering, 2007, 15(9):1366-1370(in Chinese).

    [3]

    ZHANG Y, HAO L, LIU H, et al. Principle and realization of laser display technique[J]. Optics and Precision Engineering, 2006, 14(3):402-403(in Chinese).

    [4]

    HIROAKI S, TOMOHIRO S, ATSUSHI M, et al. Laser TV with newly developed laser light sources[J]. SID Symposium Digest of Technical Papers, 2008, 39(1):854-857.

    [5]

    YU G, WANG Sh G, YUN J H, et al. Technology of digital speckle pattern interferometry and its applications[J]. Laser Technology, 2002, 26(3):237-240(in Chinese).

    [6]

    ZHANG Y P, WANG K F. Application of Labview and MATLAB in ESPI image processing[J]. Laser Technology, 2009, 33(6):582-585(in Chinese).

    [7]

    REN Sh Y, ZHANG Zh, LIU G D, et al. Restraining speckle of laser imaging system in accurate measurement[J].Optics and Precision Engineering, 2007, 15(3):331-336(in Chinese).

    [8]

    WANG X L, HE F T, JIA Q Y, et al. Laser speckle control based on optical fiber vibration[J]. Laser Technology, 2014, 38(2):177-180(in Chinese).

    [9]

    JANAKA S, REGE A, LI N. Laser speckle contrast imaging:theory, instrumentation and applications[J]. IEEE Reviews in Biomedical Engineering, 2013,6:99-110.

    [10]

    WU Y L, WU Z S. Analysis of power spectra for laser scattering intensity on rotating cylinder targets[J]. Optics and Precision Engineering, 2012, 20(12):2654-2660(in Chinese).

    [11]

    WU Y L, SHAO L, ZHANG K, et al. Image metric analysis of laser jamming effect based on wavelet energy and spot size[J]. Acta Photonica Sinica, 2013, 42(7):832-838(in Chinese).

    [12]

    HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Trans on System, Man and Cybernetics, 1973, 3(6):610-621.

    [13]

    MIAO P, LI N, THAKOR N, et al. Laser speckle reduction by using a binary micro mirror array:theory and design[J]. Optics Express, 2010, 18(1):218-236.

    [14]

    HRALICK R M. Statistical and structural approaches to testure[J]. Proceedings of the IEEE, 1979, 67(5):786-804.

    [15]

    CULA O G, DANA K J, MURPHY F P, et al. Bidirectional imaging and modeling of skin texture[J]. IEEE Engineering in Medicine and Biology Society, 2004, 51(12):2148-2159.

    [16]

    WANG L J, QIU Y Sh, CHEN H X, et al. Analysis of speckle reduction by the vibrating fiber[J]. Acta Photonica Sinica, 2011, 40(8):1211-1214(in Chinese).

  • 期刊类型引用(5)

    1. 翟春婕,王新猛,薛晓明,唐寅,李浩. 基于相关系数的生物散斑活性表征研究. 激光技术. 2024(05): 739-745 . 本站查看
    2. 洪存存,王雪琨,于文文,曹建军,钱维莹,高淑梅. 基于改进双边滤波的皮革缺陷检测. 激光技术. 2021(03): 373-377 . 本站查看
    3. 谈飞. 基于视觉传达特性的激光散斑移动速度规律分析与研究. 激光杂志. 2020(02): 64-67 . 百度学术
    4. 刘松,朱丹,佟新鑫,李英杰. 一种激光散斑光条中心提取方法. 计算机应用与软件. 2019(01): 271-276 . 百度学术
    5. 胡明娣,臧艺迪,徐家慧. 基于FABEMD的纹理图像分类算法. 西安邮电大学学报. 2018(01): 53-58 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 7
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-05-27
  • 发布日期:  2016-07-24

目录

    /

    返回文章
    返回