-
长程表面等离子体波的激发方式为棱镜耦合激发介质-金属-介质的对称结构, 如图 1所示。棱镜的介电常数为ε0εp, ε0为真空介电常数, εp为棱镜的相对介电常数。图中金属薄膜的厚度为d1, 设金属薄膜及其上下介质(指非金属介质:电介质、空气等)都是非磁(相对磁导率μr=1)的各向同性介质, 它们的介电常数分别记为ε0εm和ε0εc, εm为金属的相对介电常数, εc表示金属两测介质的相对介电常数, 其中εm=εm,r+jεm,i是复数。金属膜上方介质膜的厚度为d2, 下方介质的厚度可认为半无限大, x=-d1和x=0的面是金属与介质的两个界面。若要激发表面等离子波, 则入射光波的模式需为TM模式(Hy, Ex, Ez)。设入射偏振光在棱镜底面与法线的夹角(简称入射角)为θp。
设沿z传播的TM波的磁场强度分布为:
$ \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\mathit{\boldsymbol{H = }}{\mathit{\boldsymbol{i}}_y}{H_y} = {\mathit{\boldsymbol{i}}_y}\exp \left[ { - {\rm{j}}\left( {\omega t - \beta z} \right)} \right] \cdot \\ \left\{ \begin{array}{l} {A_{\rm{p}}}\exp \left[ {{\alpha _{\rm{p}}}\left( {x - {d_2}} \right)} \right] + {B_{\rm{p}}}{\rm{exp}}\left[ { - {\alpha _{\rm{p}}}\left( {x - {d_2}} \right)} \right], \left( {x > {d_2}} \right)\\ {A_{\rm{c}}}\exp \left( {{\alpha _{\rm{c}}}x} \right) + {B_{\rm{c}}}\exp \left( { - {\alpha _{\rm{c}}}x} \right), \left( {0 < x < {d_2}} \right)\\ {A_{\rm{m}}}\exp \left( {{\alpha _{\rm{m}}}x} \right) + {B_{\rm{m}}}\exp \left( { - {\alpha _{\rm{m}}}x} \right), \left( { - {d_1} < x < 0} \right)\\ {A_{\rm{c}}}\exp \left[ {{\alpha _{\rm{c}}}\left( {x + {d_1}} \right)} \right], \left( {x < {d_1}} \right) \end{array} \right. \end{array} $
(1) 式中, ω代表光频, β代表磁场沿着z轴方向的传播常数; A, B分别表示入射波磁场和反射光波磁场的振幅, ${k_0} = \frac{{2{\rm{ \mathsf{ π} }}}}{\lambda }, {\alpha _{\rm{p}}} = \sqrt {{\beta ^2} - {k_0}^2{\varepsilon _{\rm{p}}}} , {\alpha _{\rm{c}}} = \sqrt {{\beta ^2} - {k_0}^2{\varepsilon _{\rm{c}}}} , {\alpha _{\rm{m}}} = \sqrt {{\beta ^2} - {k_0}^2{\varepsilon _{\rm{m}}}} $; 下标p, c和m分别表示棱镜、介质和金属。波动方程由下式给出:
$ {\nabla ^2}\mathit{\boldsymbol{H - }}\frac{{{\varepsilon _{\rm{r}}}}}{{{c^2}}}\frac{{{\partial ^2}\mathit{\boldsymbol{H}}}}{{\partial {t^2}}} = 0 $
(2) 根据TM模在x=-d1, x=0, x=d2界面上的电磁场连续条件, 可得出反射率公式:
$ R = {\left| {\frac{{{B_{\rm{p}}}}}{{{A_{\rm{p}}}}}} \right|^2} = {\left| {\frac{{{r_{{\rm{c, p}}}} + {r_{{\rm{c, m, c}}}}{\rm{e}} - {\alpha _{\rm{c}}}{d_2}}}{{1 + {r_{{\rm{c, p}}}}{r_{{\rm{c, m, c}}}}{\rm{e}} - {\alpha _{\rm{c}}}{d_2}}}} \right|^2} $
(3) 式中, rc,m,c和rc,p分别表示相应层的菲涅耳系数, 可由菲涅耳公式计算得出, 其值为:
$ \begin{array}{l} {r_{{\rm{c, m, c}}}} = \frac{{{r_{{\rm{m, c}}}} + {r_{{\rm{c, m}}}}{{\rm{e}}^{{\rm{ - }}{\alpha _{\rm{m}}}{d_1}}}}}{{1 + {r_{{\rm{m, c}}}}{r_{{\rm{c, m}}}}{{\rm{e}}^{ - {\alpha _{\rm{m}}}{d_1}}}}}, {r_{{\rm{c, m}}}} = \frac{{{\varepsilon _{\rm{c}}}{\alpha _{\rm{m}}} - {\varepsilon _{\rm{c}}}{\alpha _{\rm{c}}}}}{{{\varepsilon _{\rm{c}}}{\alpha _{\rm{m}}} + {\varepsilon _{\rm{m}}}{\alpha _{\rm{c}}}}}, \\ \;\;\;{r_{{\rm{m, c}}}} = \frac{{{\varepsilon _{\rm{m}}}{\alpha _{\rm{c}}} - {\varepsilon _{\rm{c}}}{\alpha _{\rm{m}}}}}{{{\varepsilon _{\rm{m}}}{\alpha _{\rm{c}}} + {\varepsilon _{\rm{c}}}{\alpha _{\rm{m}}}}}, {r_{{\rm{c, p}}}} = \frac{{{\varepsilon _{\rm{c}}}{\alpha _{\rm{p}}} - {\varepsilon _{\rm{p}}}{\alpha _{\rm{c}}}}}{{{\varepsilon _{\rm{c}}}{\alpha _{\rm{p}}} + {\varepsilon _{\rm{p}}}{\alpha _{\rm{c}}}}} \end{array} $
(4) 当棱镜材料的折射率足够大, 从而通过调整棱镜底面的入射角使入射光(TM模式)在界面方向的波矢分量等于表面等离子体波的波矢(即满足波矢匹配条件), 长程表面等离子体波可以被激发。由(3)式可以看出, 金属膜材料及厚度、介质厚度和折射率n的小范围变化都将对反射率造成影响。
参量变化对长程表面等离子体波特性的影响
Influence of parameters change on the characteristics of long-range surface plasma wave
-
摘要: 为了掌握长程表面等离子体波的共振角度、共振峰半峰全宽以及衰减峰深度等重要特性,采用棱镜耦合激发介质-金属薄膜-介质对称结构中的长程表面等离子体波,研究了金属膜材料、厚度、介质折射率及介质厚度等参量变化时对长程表面等离子体波特性的影响。结果表明,实验中激发的长程表面等离子体波的衰减峰半峰全宽比传统的窄1~2个数量级;当介质膜厚度为500nm和1300nm时,激发的表面等离子体波的衰减深度只有薄膜厚度为700nm和1000nm时的1/2左右;随着介质膜厚度的增加,半峰全宽减小,金属膜越薄,衰减深度越深,衰减峰的半峰全宽值越小;介质膜折射率的改变对于半峰全宽的影响不明显;金属膜参量的变化将改变共振峰的位置。该研究为长程表面等离子体波的激发及应用于传感领域提供了有效依据,有利于其在波导和生物传感等方面的应用。Abstract: In order to acquire the characteristics of long-range surface plasma wave, such as the resonance angle, full width at half maximum of resonance peak and depth of attenuation peak, a prism coupling method was used to excite the long-range plasma surface wave of media-metal film-media symmetrical structure. The influences of the changes of material film material, metal film thickness, medium refractive index, medium thickness and other parameters on the characteristics of long-range surface plasma wave were studied. The results show that, the full width at half maximum of the attenuation peak of long-range surface plasma wave is narrower about 1 or 2 orders of magnitude than that of traditional surface plasma wave. When the dielectric film thickness is 500nm and 1300nm, the attenuation depth of plasma surface wave is only about 1/2 of those of dielectric film thickness 700nm and 1000nm. The full width at half maximum decreases with the increasing of dielectric film thickness. The thinner metal film is, the deeper attenuation depth is, the smaller full width at half maximum of attenuation peak is. The changes of medium refractive index has no obvious influence on full width at half maximum. The various metal film parameters will change the position of resonance peak. The study provides the effective basis for the application of long-range surface plasma wave in sensing, waveguide, and biosensors field.
-
[1] SARID D. Long-range surface-plasma waves on very thin metal films[J]. Physics Review Letters, 1981, 47(26):1927-1930. doi: 10.1103/PhysRevLett.47.1927 [2] DECK R T, SARID D. Enhancement of second harmonic generation by coupling to long-range surface plasmas[J]. Journal of the Optical Society of America, 1982, 72(12):1613-1617. doi: 10.1364/JOSA.72.001613 [3] SHI X L, ZHENG S L, CHI H, et al. All-optical modulator with long range surface plasmas resonance[J]. Optics & Laser Technology, 2013, 49(7):316-319. [4] SHI H, LIU Z Y, WANG X X, et al. A symmetrical optical waveguide basedsurface plasmas resonance biosensing system[J]. Sensors and Actuators, 2013, B185(8):91-96. [5] PARK S Y, KIM J T, SHIN J S, et al. Hybrid vertical directional coupling between a long range surface plasmas polariton waveguide and a dielectric waveguide[J]. Optics Communications, 2009, 282(23):4513-4517. doi: 10.1016/j.optcom.2009.08.038 [6] CAO Z Q. Guided wave optics[M]. Beijing:Science and Technology Press, 2007:144-146(in Chinese). [7] SLAVIK R, HOMOLA J. Ultrahigh resolution long range surface plasmas-based sensor[J]. Sensors and Actuators, 2007, B123(1):10-12. [8] NENNINGER G G, HOMOLA J, YEE S S. Long range surface plasmas for high resolution surface plasmas resonance sensors[J].Sensors and Actuators, 2001, B74(1):145-151. [9] TAN X X, WANG G J, WANG Zh B. Opened suspended core fiber chip based on surface plasma resonance enhancement mechanism[J]. Laser Technology, 2016, 40(2):209-212(in Chinese). [10] HU M Y, ZHU X, QI L J. Numerical simulation of Otto structure in surface plasma wave light modulator[J]. Laser Technology, 2005, 29(3):325-327(in Chinese). [11] LI Y X, LIU F, HUANG Y D, et al. Coupling between second-order mode in dielectricwaveguide and fundamental mode in long range surface plasmas waveguide[J]. Optics Communications, 2013, 289(2):60-63. [12] GUO X W, DONG Q M. Long range surface plasmas interference lithography[J].Microelectronic Engineering, 2011, 88(8):2184-2187. doi: 10.1016/j.mee.2011.01.006 [13] KRUPIN O, WANG C, BERINI P. Selective capture of human red blood cells based on blood group using long-range surface plasmas waveguides[J]. Biosensors and Bioelectronics, 2014, 53(3):117-122. [14] SUI G R, CHENG L, CHEN L. Large positive and negative lateral optical beam shift due to long-range surface plasmas resonance[J]. Optics Communications, 2011, 284(6):1553-1556. doi: 10.1016/j.optcom.2010.10.091