-
局部深层损伤(凹坑、断裂、穴蚀等)是齿轮、轴类等运动件常见的失效形式,其特点是零件整体保持完好,仅零件局部丧失使用性能[15]。
-
对120mm×120mm×30mm的长方体模具阴模进行加工时,在顶部错误铣削一个20mm×10mm×5mm的半椭球,导致模具失效。将其作为局部深层损伤区域零件,逆向得点云数据,进行预处理,得点云模型。然后对零件进行几何形貌分析,创建对齐参考特征,平面、直线和点,在点云中创建相似的特征,把创建的特征和点云进行群组。最后,将点云中的特征与世界坐标系中的参考特征对齐,如图 12a所示。在将点云数据对齐到世界坐标系下后,采用ICP算法[16]对点云数据与标准CAD模型进行再次配准。只需要对比中间椭球形区域进行精确配准,如图 12b所示。
通过3-D比较,对精确配准的点云模型和标准CAD模型进行偏差分析,得到3-D彩色偏差色谱图,如图 13a所示,图中椭圆形部分表示了局部深层损伤的3-D形貌和偏差大小。设定误差阀值为0.1mm,得到其局部深层损伤区域点云, 如图 13b所示。只在偏差较少的零件上表面和椭球接触区域存在部分噪声点。局部深层损伤区域点云信息如表 1所示。提取得到的损伤区域点云位置与损伤区域20mm×10mm×5mm半椭球形的损伤尺寸和定位吻合度极高。根据其破损区域特征,进行点云处理、曲线构造、曲面拟合,进而还原其形状, 如图 13c所示。
Table 1. Point cloud information of damage area
size/mm minimum/mm maximum/mm x 19.9376 49.9083 69.8459 y 41.0000 16.5000 56.5000 z 5.0340 -4.0000 1.0340 -
根据前文中的边界输出原理提取每层熔覆边界特征点数据,得到分层切片点云。通过光顺和插补,得到边界特征点云。利用三次B样条曲线拟合分层切片边界,并分析拟合误差根据边界拟合曲线,进行填充,规划熔覆路径,如图 14a所示。根据熔覆路径生成机器人熔覆控制程序,并进行缺陷再制造修复,修复后的效果如图 14b所示。
激光熔覆零件破损边界提取和形状还原研究
Study on damage boundary extraction and shape reduction of laser cladding parts
-
摘要: 为了快速、准确地提取零件破损边界,直观地反映零件损伤的过程和结果并进行形状还原,更好地实现激光熔覆再制造修复复杂破损零件,依据激光熔覆的工艺特点对破损零件的缺陷类型进行划分,并对不同类型缺陷进行破损边界提取和形状还原方法的研究。提出基于曲率阈值和法矢夹角阈值的表面浅斑类损伤边界特征以及基于3-D比较的局部深层类损伤边界特征进行提取的方法,采用NURBS曲面对表面浅斑类损伤零件和传统曲面造型方法对局部深层类损伤零件进行形状还原,最后路径规划进行激光熔覆再制造修复实验验证。结果表明,此方法提高了其破损区域提取和还原的精度和效率,熔覆形貌波纹度较小。该研究为零件破损边界提取与形状还原在激光熔覆再制造的应用提供了理论基础。Abstract: In order to extract the damage boundary of parts quickly and accurately, observe the process and results of parts damage and realize the shape reduction, and repair complex damaged parts by laser cladding remanufacturing, the defect types of the damaged parts were divided according to process characteristics of laser cladding, the damage boundary extraction and shape reduction methods of different types of defects were studied. The method of extracting boundary features of surface spots based on the curvature threshold and the normal vector threshold and the method of extracting boundary features of local deep damage based on 3-D comparison were proposed. The methods of shape reduction were presented, for the local deep damage parts by the traditional surface and for the superficial damage parts by the NURBS surface. And then, the experiments of laser cladding remanufacturing and restoration were carried out to verify the feasibility of the proposed method by path planning. The results show that the precision and efficiency of the extraction and restoration of the damaged area are improved and the cladding morphology waviness is smaller. The study provides the theoretical basis for the application of extraction and shape reduction of the damaged parts in laser cladding remanufacturing.
-
Key words:
- laser technique /
- boundary extraction /
- shape reduction /
- laser cladding /
- path planning
-
Table 1. Point cloud information of damage area
size/mm minimum/mm maximum/mm x 19.9376 49.9083 69.8459 y 41.0000 16.5000 56.5000 z 5.0340 -4.0000 1.0340 -
[1] XU B S. Development status and prospect of green remanufacturing engineering[J] Engineering Sciences, 2011, 13(1):4-10(in Chinese). [2] JIANG F B, SHI Sh H, FU G Y. Numerical simulation of powder-gas flow field of inside-beam powder feeding nozzle with changing attitude[J].Laser Technology, 2015, 39(2):145-151(in Chinese). [3] GUO H M, WANG W J, LIU J H, et al. Effect of wheel cladding on wear and damage property of wheel/rail wear and under heavy-haul condition[J].Journal of Functional Materials, 2014, 45(9):9033-9042(in Chinese). [4] FU Y M, GAO Zh T, MA Y H, et al.Research on electromagnetic crack heat arrest and laser repaired in hot diemaetal[C]//International Conference on Advanced Technology of Design and Manufacture. New York, USA: IEEE, 2010: 338-341. [5] YANG C X, XU B, DENG Q L.The flexible fiber laser cladding processing research[J].Electromachining & Mould, 2012(s1):38-40(in Chinese). [6] DONG L, YANG X Ch, ZHANG H M, et al. Path generation for repairing damaged parts of free-form surfaces in laser remanufacturing[J]. Chinese Journal of Lasers, 2012, 39(7):703007(in Chinese). doi: 10.3788/CJL [7] LI J H, ZHANG D Q, YAO F P, et al. Study on 3-D remodeling of mold broken area based on reverse engineering[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2014(9):33-38(in Chinese). [8] LIU L F, YANG X Ch. Path planning of laser remanufacturing robot based on reverse engineering[J]. Chinese Journal of Lasers, 2011, 38(7):703008(in Chinese). doi: 10.3788/CJL [9] YILMAZ O, NABILL G, GAO J. A repair and overhaul methodology for aeroenginecomponents[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(2):190-201. doi: 10.1016/j.rcim.2009.07.001 [10] CHENG S Y, YU G X, ZHANG X W. Surface model reconstruction methodologies in reverse engineering system[J]. Computer Integrated Manufacturing Systems, 2008, 14(10):1934-1939(in Chinese). [11] CHENG Zh Q.Application of rapid surface modeling method[J]. Knowledge Economy, 2010(11):94(in Chinese). [12] ZHANG Sh P. Laser cladding repair for wearing teeth in excavator[J]. Hot Working Technology, 2014, 43(14):169-170(in Chinese). [13] LIU Sh L, ZHOU R R, ZHANG L Y. Feature line extraction from triangular mesh model[J]. Journal of Computer Aided Design & Computer Graphics, 2003, 15(4):444-448(in Chinese). [14] MO M L. Application of reverse engineering technology on automobile panel measuring & modeling[J]. Machine Tool & Hydraulics, 2008, 36(12):49-51. [15] TONG J W. Laser remanufacturing technology used in locomotive repair[J]. Railway Locomotive and Motor Car, 2014(10):21-27(in Chinese). [16] WANG W B, MA Z, LI A G, et al. Damaged area positioning for remanufacturing workpiece[J]. Bulletin of Science and Technology, 2010, 26(5):652-656(in Chinese).