-
从图 1中可以看出,接收模块的核心部件PSD是固定在滑块上的,PSD始终垂直于导轨,而导轨并不是完美的直线,存在着左右与上下的起伏,因此随着滑块在导轨上的滑动,PSD和激光不再是垂直的关系,两者之间存在一个偏角α, 这个偏角会对PSD测量的坐标产生影响[23]。
图 3为激光偏角的原理图。其中直线AC代表激光,A点是滑块移动之前激光与PSD的交点,C点是滑块移动之后激光与PSD的交点。直线AB,BD是辅助线,AB平行于导轨,BD垂直于AC。
当导轨出现倾斜时,测量系统测得的光斑位移为线段BC(设为d1),实际上的导轨偏差位移为线段BD(设为d2), 测量误差设为δ, 直线AC和直线AB之间的夹角设为α, 则有以下关系:
$ \delta = {d_1} - {d_2} = {d_1}(1 - {\rm{cos}}\alpha ) $
(1) 导轨在直线度测量之前都会经过普通水平尺的测量,精度为0.029°, 等于0.5mm/m,所以,α < 0.029°。另外d1(即线段BC长度)被PSD的直径限制,小于6mm。由此可以算出:
$ \delta < 12{\rm{mm}} \times \left( {1 - {\rm{cos}}0.029^\circ } \right) = 0.00153{\rm{ \mathsf{ μ} m}} $
(2) δ≪1μm, 相对于PSD的精度3.4μm来说可以忽略不计。因此, 激光偏角对直线度测量造成的误差可以忽略不计。
-
日本滨松公司给出PSD的参考精度为3.4μm。为了验证长距离情况下PSD的使用精度,采取了高精度位移平台来进行验证实验,位移平台精度达到1μm,激光器固定在距离PSD 10m处,检测装置和位移平台一起移动,读出位移平台上的数据和PSD导轨准直系统给出的位移数据,接着进行比较,观察PSD的精度,如表 1所示。
Table 1. Displacement of micro-displacement platform and PSD
theory displacement/μm actual displacement/μm deviationvalue/μm 56 54.70 1.30 43 44.40 1.40 229 232.50 3.50 107 109.45 2.45 233 235.82 2.82 115 116.35 1.35 69 71.70 2.70 232 232.50 0.50 107 106.05 0.94 59 58.10 0.90 58 61.59 3.59 120 119.60 0.40 60 61.59 1.59 59 58.10 0.90 105 105.30 0.30 从表 1中可以看出,一共15组数据,平均误差为1.64μm,最大误差为2.70μm,标准差为1.06μm,小于3.4μm。基于以上数据可以得出结论:PSD的测量精度达到了3.4μm。
-
为了检验导轨准直系统的实际使用情况,在河南某数控机床有限公司开展了现场实验,检测了还没有经过准直的机床。导轨长度为8m,由于接收模块在导轨上的滑块本身长30cm,不可以移出导轨,所以只测了7.2m的长度。每隔30cm测一个点,一共测了25组数据,重复测试了3次。
导轨在x, y方向上的直线度如图 4所示。导轨3次测量的标准差如图 5所示。
从图 4中可以看出机床导轨在x(水平)方向、y(垂直)方向上的直线度。x方向上的偏差较小,y方向上偏差较大,这是由于导轨安装的方式决定的,x方向没有螺丝固定,精度主要依赖于导轨出厂时的精度,本身不易产生偏移。y方向由螺丝固定,螺丝的松紧会造成导轨的形变,从而引起导轨的起伏,即y方向上的误差。
从图 5中可以看出,导轨x方向、y方向重复精度都小于4μm,满足5μm的精度要求。这意味着工人可以根据这些数据进行机床准直的调节,预期调节精度可以达到5μm。
基于光斑位置传感器的长导轨准直系统
Long guide rail alignment systems based on position sensitive detectors
-
摘要: 为了检测长导轨的直线度,采用激光作为参考基准线,将2维光斑位置传感器作为光电转换器件。当固定在导轨滑块上的2维光斑位置传感器沿着导轨移动时,光斑的位置数据会通过蓝牙模块传输到终端上,输入位置信息之后,软件会自动绘制出导轨的2维直线度曲线。结果表明,计算出激光偏角带来的误差远小于1μm;通过高精度位移平台,实验验证了系统的精度可达到3.4μm;实际使用中,检测了7.2m的长导轨,取得了长导轨的直线度数据,重复精度可达5μm。这一结果对长导轨直线度测量的研究是有帮助的。Abstract: In order to detect the long rail straightness, laser was used as the reference line, and 2-D position sensitive detector was used as photoelectric converter. When 2-D position sensitive detector was fixed on the guide rail slider and moved along the guide rail, the spot position data was transmitted to the terminal through bluetooth module. After entering the location information, the curve of 2-D straightness was drawn by the software automatically. The results show that, through theoretical analysis, the error of laser deflection angle is calculated and is less than 1μm. The system accuracy is verified by high-precision displacement platform experiment and reaches 3.4μm. In practical appliaction, a long rail of 7.2m is detected and the straightness data of long guide rail is obtained. The repeatability precision can reach 5μm. The study is helpful for straightness measurement of long rails.
-
Key words:
- laser technique /
- laser alignment /
- contrast experiment /
- position sensitive detector
-
Table 1. Displacement of micro-displacement platform and PSD
theory displacement/μm actual displacement/μm deviationvalue/μm 56 54.70 1.30 43 44.40 1.40 229 232.50 3.50 107 109.45 2.45 233 235.82 2.82 115 116.35 1.35 69 71.70 2.70 232 232.50 0.50 107 106.05 0.94 59 58.10 0.90 58 61.59 3.59 120 119.60 0.40 60 61.59 1.59 59 58.10 0.90 105 105.30 0.30 -
[1] WANG Y P. Research of flatness and linearity testing system[D].Shenyang: Shenyang University of Technology, 2004: 9-38(in Chin-ese). [2] YUE W L, WU Y. A fast evaluation method for flatness and straightness tolerance by means of incremental algorithm[J].Acta Metrologica Sinica, 2008, 29(2):120-123(in Chinese). [3] HUANG F G, CUI Ch C. Comparison of evaluating precision of straightness error between least square method and least envelope zone method[J].Optics and Precision Engineering, 2007, 15(6):879-893(in Chinese). [4] LI Y J, ZHENG Z G. Calculation of straightness error and computerization[J].China Measurement Technology, 2007, 33(3):67-69(in Chinese). [5] HU Zh X. Research on digitized evaluation theory and algorithm for the straightness error[D].Hunan: Hunan University, 2012: 15-94(in Chinese). [6] SONG Q. Research on straightness measurement system of long rails based on 2D-PSD[D]. Changchun: Changchun University of Science and Technology, 2014: 2-20(in Chinese). [7] LI F. Study on straightness testing system of super-length guideway[D]. Changchun: Changchun University of Science and Technology, 2002: 2-15(in Chinese). [8] LÜ A M, WANG Zh X, HE A Zh, et al. Measuring the straightness of the long slideway using PSD[J].Journal of Transducer Technology, 1996(5):55-56(in Chinese). [9] JIA T X, XU X P, DONG W B. Design of automatic testing system for 2-D position sensitive detector(PSD)[J]. Instrument Technique and Sensor, 2012(10):67-69(in Chinese). [10] MA Ch G, YUAN H X, HE A Zh. Research of anti-jamming in facula orientation[J]. Laser Technology, 2002, 26(4):308-310(in Chinese). [11] MOU L N. Displacement detection system design based on PSD[D]. Taiyuan: North Central University, 2007: 2-30(in Chinese). [12] LIU P, GAO L M, LE K D. Laser measurement system for rail linearity[J]. Laser Technology, 2009, 33(6):575-578(in Chinese). [13] HU Ch D, LI Y Q, Zh X, et al. Laser alignment measuring and testing equipment based on interference fringe[J]. Laser Technology, 2009, 33(5):522-525(in Chinese). [14] YANG Sh L, SU Y B, HE J T, et al. Study of measurement accuracy of position sensitive detectors[J]. Laser Technology, 2014, 38(6):830-834(in Chinese). [15] FENG Q B, LIANG J W. Development of a single mode fiber laser collimator[J]. Laser Technology, 1994, 18(6):357-360(in Ch-inese). [16] LÜ A M, YUAN H X, HE A Zh. The research in the influence of beam spot on the precision of PSD[J]. Laser Technology, 1998, 22(5):294-297(in Chinese). [17] LÜ A M, YUAN H X, HE A Zh. Experimental study of the effect of light source on position precision of PSD[J]. Laser Technology, 2000, 24(3):192-195(in Chinese). [18] FENG Q B, ZHANG B, KUANG C F. A straightness measurement system using a single-mode fiber-coupled laser module[J]. Optics & Laser Techology, 2004, 36(4):279-283. [19] SONG C, YENG Ch S. Linearity indices and linearity improvement of 2-D tetralateral position-sensitive detector[J]. IEEE Transactions on Electron Devices, September, 2010, 57(9):2310-2316. doi: 10.1109/TED.2010.2051862 [20] LIU Ch, MA Y. Nonlinear correction of PSD with genetic algorithm based on neural network[J]. Journal of Electronic Measurement and Instrument, 2015, 29(8):1157-1163(in Chinese). [21] LIN Q S, YANG X J, WANG J X, et al. 2-D nonlinear correction in an improved BP neural network[J]. Laser Technology, 2012, 36(1):124-130(in Chinese). [22] LI Zh K, QIN Y Y. Research of on-line measurement and non-linearity correction of two dimention PSD device[J]. Laser Technology, 2004, 28(4):370-372(in Chinese). [23] EKINCI O, MAYER J R R. Relationships between straightness and angular kinematic errors in machines[J]. International Journal of Machine Tools & Manufacture, 2007, 47(12/13):1997-2004.