-
本文中设计了激光单点熔凝Zr65非晶合金和激光单道熔凝Zr65非晶合金两个模拟实验。分析激光单点和单道熔凝非晶合金过程中熔池和热影响区的热历史和组织变化。重点模拟了在单道熔凝过程中,后置位的熔池成形对先置位熔池和热影响区的热效应,研究再升温引起的非晶合金的晶化效应。
为了方便模拟计算,在一定程度上对模型提出以下假设:(1)假设材料为各向同性;(2)忽略熔池流体的流动作用;(3)忽略材料的汽化作用;(4)忽略材料相变潜热。
模型的建立如下。激光功率P=3200W,光斑直径D=3mm,对流换热加载在除激光辐照面的其余表面上。对于单点熔凝实验,模拟总时长为1s,热源加载3ms,然后自然空冷。对于单道熔凝实验,模拟总时长为6s,激光扫描速率v=180mm/min,激光行走18mm。
-
图 1是用DesignModeler软件建立的有限元模型。几何尺寸为50mm×20mm×5mm,越靠近热源位置的网格越细。模拟计算采用的Zr65非晶合金材料性能如表 1所示[11]。
Table 1. Material property parameters of amorphous alloys
tempera-ture/K dencity/(kg·m-3) specific heat/(J·kg-1·K-1) coefficient of heat conduction/(W·m-1·K-1) coefficoent of convection/(W·mm-2·K-1) 293.15 7141 286 8.1 62.3 373.15 7127 295 9.2 62.3 573.15 7088 317 12.1 62.3 873.15 7024 369 16.6 62.3 1173.15 6954 210 21.4 62.3 1473.15 6473 342 28.7 62.3 1773.15 6302 383 32.5 62.3 -
采用高斯热源模型,材料表面激光辐照的功率密度为[12]:
$ F(r)=\frac{P}{\pi w^{2}} \exp \left(-\frac{r^{2}}{w^{2}}\right) $
(1) 式中,P为入射激光功率,w为高斯形式的光束半径,r为其余点离加热斑点中心的距离。
材料表面受激光辐照处的温度分布为[13]:
$ \rho c \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(\kappa \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\kappa \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(\kappa \frac{\partial T}{\partial z}\right)+Q $
(2) 式中,κ为传导率,ρ为材料密度,c为材料比热容,T为温度,t为时间,Q为加热速率。
Zr65Al7.5Ni10Cu17.5非晶合金激光熔凝的热效应模拟
Simulation of thermal effect of Zr65Al7.5Ni10Cu17.5 amorphous alloy by laser melting
-
摘要: 为了研究激光增材制备非晶合金过程中熔池和热影响区的成形机制, 利用有限元软件ANSYS, 对激光增材制造技术的基础过程-激光快速熔凝Zr65Al7.5Ni10Cu17.5非晶合金的热效应进行了数值模拟分析。结果表明, 激光单点熔凝时, 熔池的平均冷却速率为6.3×104K/s, 热影响区的平均冷却速率为1.4×104K/s, 远高于Zr65Al7.5Ni10Cu17.5非晶合金的临界冷却速率1.5K/s, 说明激光单点熔凝的热变化满足非晶合金的生长条件; 激光单道熔凝过程中, 熔池的平均冷却速率仍比较高, 为2.11×102K/s, 但热影响区的平均冷却速率较低, 为74K/s, 且热影响区会产生弛豫累积, 可能造成一定程度的晶化。此研究为激光增材制备非晶合金材料提供热效应的理论基础。Abstract: In order to study the forming mechanism of molten pool and heat-affected zone in the preparation of amorphous alloys by laser additive manufacturing, finite element software ANSYS was used. The thermal effect of laser rapid melting Zr65Al7.5Ni10Cu17.5 amorphous alloy was numerically simulated and analyzed. The simulation results show that, average cooling rate of molten pool is 6.3×104K/s when laser solidification is carried out at single point. Average cooling rate in heat affected zone is 1.4×104K/s, much higher than 1.5K/s of critical cooling rate of Zr65Al7.5Ni10Cu17.5 amorphous alloy. The thermal change of single-point laser melting meets the growth conditions of amorphous alloys. In the process of single-channel laser melting, average cooling rate of molten pool is 2.11×102K/s, still relatively high. However, average cooling rate of heat affected zone is 74K/s and low. In addition, relaxation accumulation occurs in the heat-affected zone. It may cause a certain degree of crystallization. This study provides theoretical basis for thermal effect of amorphous alloys prepared by laser additive manufacturing.
-
Key words:
- laser technique /
- amorphous alloy /
- numerical simulation /
- thermal effect /
- crystallization behavior
-
Figure 3. Time-temperature curves at A, B and C shown in Fig. 2a
Figure 7. Time-temperature curves at E, D, F and G shown in Fig. 6
Table 1. Material property parameters of amorphous alloys
tempera-ture/K dencity/(kg·m-3) specific heat/(J·kg-1·K-1) coefficient of heat conduction/(W·m-1·K-1) coefficoent of convection/(W·mm-2·K-1) 293.15 7141 286 8.1 62.3 373.15 7127 295 9.2 62.3 573.15 7088 317 12.1 62.3 873.15 7024 369 16.6 62.3 1173.15 6954 210 21.4 62.3 1473.15 6473 342 28.7 62.3 1773.15 6302 383 32.5 62.3 -
[1] PAULY S, SCHRICKER C, SCUDINO S, et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 2017, 135:133-141. [2] YE X, BAE H, SHIN Y C, et al. In situ synthesis and characterization of Zr-based amorphous composite by laser direct deposition[J]. Metallurgical and Materials Transactions, 2015, A46(9):4316-4325. [3] PAULY S, LBER L, PETTERS R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1/2):37-41. [4] JUNG H Y, CHOI S J, PRASHANTH K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter stu-dy[J]. Materials & Design, 2015, 86:703-708. [5] LI X P, ROBERTS M P, O'KEEFFE S, et al. Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and me-chanical properties[J]. Materials & Design, 2016, 112:217-226. [6] ZHANG Y, LIN X, WANG L, et al. Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming[J]. Intermetallics, 2015, 66:22-30. doi: 10.1016/j.intermet.2015.06.007 [7] SCHMIDT M, MERKLEIN M, BOURELL D, et al. Laser based additive manufacturing in industry and academia[J]. CIRP Annals—Manufacturing Technology, 2017, 66(2):561-583. doi: 10.1016/j.cirp.2017.05.011 [8] LU Y, ZHANG H, LI H, et al. Crystallization prediction on laser three-dimensional printing of Zr-based bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2017, 461:12-17. doi: 10.1016/j.jnoncrysol.2017.01.038 [9] GU D D, MA Ch L, XIA M J, et al. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing[J]. Engineering, 2017, 3(5):675-684. doi: 10.1016/J.ENG.2017.05.011 [10] LIU Sh B, LIU J Ch, QI L J, et al. Numerical simulation of laser remelting process based on smoothed particles hydrodynamics method[J]. Transactions of Materials and Heat Treatment, 2017, 38(1):184-190(in Chinese). [11] GAN Y. Study on microstructure and property of Zr-Al-Ni-Cu amorphous material prepared by laser additive manufacturing[D]. Taiyuan: Taiyuan University of Technology, 2015: 23-29(in Chinese). [12] CAI Ch B, LI M Y, HAN B, et al. Numerial simulation iron-based cladding coating with wide-band laser at different preheating tempe-ratures[J]. Applied Laser, 2017, 37(1):66-71(in Chinese). [13] TSENG W C, AOH J N. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J]. Optics & Laser Technology, 2013, 48(11):141-152. [14] HU Q, LIN X, YANG G L, et al. Crystallization behavior of Zr55Al10Ni5Cu30 amorphous alloys with different morphologies and thermal history conditions[J]. Acta Metallurgica Sinica, 2012, 48(12):1467-1473(in Chinese). doi: 10.3724/SP.J.1037.2012.00433 [15] YANG G L, LIN X, HU Q, et al. Effect of specimen temperature on crystallization during laser remeltitng Zr55Cu30Al10Ni5 bulk metallic glass[J]. Acta Metallurgica Sinica, 2013, 49(8):925-931(in Ch-inese). doi: 10.3724/SP.J.1037.2013.00166 [16] LI G, JIA M D, LIU L, et al. Microstructure and properties of laser cladding Ni40Zr30Ta28 amorphous alloy coating[J]. Laser Technology, 2010, 34(3):306-308(in Chinese). [17] HE Y Y, LIU Y J, CHEN M, et al. Study on the law of laser scanning rate and microstructure and properties of cladding layer[J]. Laser Technology, 2019, 43(2):201-204(in Chinese). [18] XUA H D, LUA Y Zh, et al. Laser 3-D printing of Zr-based bulk metallic glass[J]. Journal of Manufacturing Processes, 2019, 39:102-105. doi: 10.1016/j.jmapro.2019.02.020 [19] DI O, NING L, LIN L. Structural heterogeneity in 3-D printed Zr-based bulk metallic glass by selective laser melting[J]. Journal of Alloys & Compounds, 2018, 740:603-609. [20] DI O, NING L, WEI X, et al. 3-D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 2017, 90:128-134. doi: 10.1016/j.intermet.2017.07.010