Abstract:
In order to study the intensity characteristics of non-uniformly polarized beams in ocean turbulence, the intensity distribution of the non-uniformly polarized (NUP) beams propagating in the oceanic turbulence was obtained by using the extended Huygens-Fresnel diffraction integral formula. The intensity characteristics of the non-uniformly polarized beams propagating in the seawater were investigated in great detail. It is found that the larger the parameters
n and
K of the non-uniformly polarized beam are, the more obvious the intensity distribution deviates from the Gaussian distribution. However, with the increase of the propagation distance in the ocean, the intensity distribution returns to the Gaussian distribution under the influence of the oceanic turbulence. In addition, the results also show that the larger the
χT is, or the smaller the
ε is, or the larger the
w is, the more the intensity distribution tends to be Gaussian distribution. The research results have potential application value in ocean optical communication and imaging.