Processing math: 0%
高级检索

非均匀偏振光束在海洋湍流中的光强特性

张艳红, 卢腾飞, 刘永欣, 陈子阳, 孙顺红

张艳红, 卢腾飞, 刘永欣, 陈子阳, 孙顺红. 非均匀偏振光束在海洋湍流中的光强特性[J]. 激光技术, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007
引用本文: 张艳红, 卢腾飞, 刘永欣, 陈子阳, 孙顺红. 非均匀偏振光束在海洋湍流中的光强特性[J]. 激光技术, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007
ZHANG Yanhong, LU Tengfei, LIU Yongxin, CHEN Ziyang, SUN Shunhong. Intensities of non-uniformly polarized beams in the oceanic turbulence[J]. LASER TECHNOLOGY, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007
Citation: ZHANG Yanhong, LU Tengfei, LIU Yongxin, CHEN Ziyang, SUN Shunhong. Intensities of non-uniformly polarized beams in the oceanic turbulence[J]. LASER TECHNOLOGY, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007

非均匀偏振光束在海洋湍流中的光强特性

基金项目: 

国家自然科学基金资助项目 61505059

福建省中青年教师教育科研资助项目 JAT160917

详细信息
    作者简介:

    张艳红(1979-),女,硕士,讲师,现从事激光传输与变换方面的研究

  • 中图分类号: O436.3

Intensities of non-uniformly polarized beams in the oceanic turbulence

  • 摘要: 为了研究非均匀偏振光束在海洋湍流中的光强特性,采用广义的惠更斯-菲涅耳原理,得到非均匀偏振光束经过海洋湍流传输后的光强分布, 并对非均匀偏振光束在海水中传播的传输特性进行了研究。结果表明,非均匀偏振光束的参量nK越大,其光强分布偏离高斯分布越明显,但随着传输距离的增大,海洋湍流对光束的影响也增大,光强分布又回到高斯分布;随着均方温度耗散率χT或温度与盐度波动的相对强度w的增大,或者单位质量液体中的湍流动能的耗散率ε的减小,非均匀偏振光束的光强分布就会更趋于高斯分布。该研究结果在海洋光通信以及成像方面存在潜在的应用价值。
    Abstract: In order to study the intensity characteristics of non-uniformly polarized beams in ocean turbulence, the intensity distribution of the non-uniformly polarized (NUP) beams propagating in the oceanic turbulence was obtained by using the extended Huygens-Fresnel diffraction integral formula. The intensity characteristics of the non-uniformly polarized beams propagating in the seawater were investigated in great detail. It is found that the larger the parameters n and K of the non-uniformly polarized beam are, the more obvious the intensity distribution deviates from the Gaussian distribution. However, with the increase of the propagation distance in the ocean, the intensity distribution returns to the Gaussian distribution under the influence of the oceanic turbulence. In addition, the results also show that the larger the χT is, or the smaller the ε is, or the larger the w is, the more the intensity distribution tends to be Gaussian distribution. The research results have potential application value in ocean optical communication and imaging.
  • 近年来,各类光束在海洋湍流中传输的特性因其在水下光通信等领域的潜在利用价值而受到普遍的关注。2011年,KOROTKOVA等人采用一种由温度和盐度共同组成的综合模型的能谱来描述海洋湍流,研究了海洋湍流对高斯-谢尔模型电磁光束的偏振度和光谱的影响[1-2]。随后,国内各研究者也逐渐展开了一些列激光束在海洋湍流中的传输的研究[3-16]。2014年, 浙江大学ZHAO等人先后研究了海洋湍流对径向偏振光束、电磁涡旋光束以及电磁非均匀相干光束的传输特性的影响[5-7]。2015年, HUANG等人研究了海洋湍流对部分相干厄米-高斯线列阵光束的光束质量的影响[11]。2015年, XU等人研究了部分相干平顶(partially coherent flat-topped, PCFT)光束阵列在海洋湍流中的传输特性[12]。2016年, 大连海事大学LIU等人研究了径向相位锁定部分相干洛伦兹-高斯阵列光束在海洋湍流中的演化特性;2017年研究了部分相干洛伦兹高斯涡旋光束在海洋湍流中的传播特性[15-16]。2018年, 西安电子科技大学NIU等人研究了相位屏法模拟高斯阵列光束海洋湍流传输特性[17]

    而当线偏振的激光通过激光放大介质时,温度导致的双折射将对光束的不同部分进行不同的偏振调制,这将导致光束的不同部分呈现出不同的偏振态。这种光束被称作非均匀偏振光束[18-20]。非均匀偏振光束在现实中有很多实际运用,因此研究其在海洋湍流中的传输特性非常有必要。本文中重点讨论了光束参量及海洋湍流强弱对非均匀偏振光束的光强分布的影响。

    假设一非均匀偏振(nonuniformly polarized, NUP)光束在光源平面的场可以表示为[18]

    \mathit{\boldsymbol{J}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right) = \left[ {\begin{array}{*{20}{l}} {{J_{xx}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)}&{{J_{xy}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)}\\ {{J_{yx}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)}&{{J_{yy}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)} \end{array}} \right] (1)
    \begin{array}{*{20}{c}} {{J_{\alpha \beta }}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right) = \left\langle {E_\alpha ^*\left( {\mathit{\boldsymbol{r}}_1^\prime , t} \right){E_\beta }\left( {\mathit{\boldsymbol{r}}_2^\prime , t} \right)} \right\rangle , }\\ {(\alpha , \beta = x, y)} \end{array} (2)

    式中,r1′,r2′是光源平面的位置矢量,Ex(r′, t), Ey(r′, t)是场的直角坐标分量,*表示复共轭,〈〉表示系综平均。本文中采用参考文献[21]中非均匀偏振光束的场的直角坐标分量为:

    \left\{ {\begin{array}{*{20}{l}} {{E_x}\left( {{\mathit{\boldsymbol{r}}^\prime }, \theta } \right) = \exp \left( { - \frac{{{\mathit{\boldsymbol{r}}^{\prime 2}}}}{{w_0^2}}} \right){{\left( {\frac{1}{{1 + {{\left( {K{\mathit{\boldsymbol{r}}^{\prime 2}}} \right)}^n}}}} \right)}^{1/2}}}\\ {{E_y}\left( {{\mathit{\boldsymbol{r}}^\prime }, \theta } \right) = \exp \left( { - \frac{{{\mathit{\boldsymbol{r}}^{\prime 2}}}}{{w_0^2}}} \right){{\left[ {\frac{{{{\left( {K{\mathit{\boldsymbol{r}}^{\prime 2}}} \right)}^n}}}{{1 + {{\left( {K{\mathit{\boldsymbol{r}}^{\prime 2}}} \right)}^n}}}} \right]}^{1/2}}} \end{array}} \right. (3)

    式中,w0代表光束束腰半径,K是比例系数,n是幂指数,Kn会影响非均匀偏振光束的偏振度分布。图 1是非均匀偏振光束的初始光强分布及对应的偏振态分布。光束参量分别为w0=1×10-2m,K=4/w02n=2。

    Figure 1. a—the initial intensity distribution of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2) b—the corresponding polarization distribution
    Figure  1.  a—the initial intensity distribution of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2) b—the corresponding polarization distribution

    当此光束在海洋中传输时,根据广义的惠更斯-菲涅耳原理,利用源平面的交叉谱密度矩阵元可得到在海洋湍流中传输到Z=z平面的交叉谱密度为[7]

    \begin{array}{*{20}{c}} {\hat J\left( {{\mathit{\boldsymbol{r}}_\mathit{\boldsymbol{1}}}, {\mathit{\boldsymbol{r}}_2}, z} \right) = \frac{{{k^2}}}{{4{\pi ^2}{z^2}}}\int {\hat J\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right) \times } }\\ {\exp \left[ { - \frac{{{\rm{i}}k}}{{2z}}{{\left( {\mathit{\boldsymbol{r}}_1^\prime - {\mathit{\boldsymbol{r}}_1}} \right)}^2} + \frac{{{\rm{i}}k}}{{2z}}{{\left( {\mathit{\boldsymbol{r}}_2^\prime - {\mathit{\boldsymbol{r}}_2}} \right)}^2}} \right] \times }\\ {\exp \left[ { - \frac{1}{{\rho _0^2}}{{\left( {\mathit{\boldsymbol{r}}_1^\prime - \mathit{\boldsymbol{r}}_2^\prime } \right)}^2}} \right]{\rm{d}}\mathit{\boldsymbol{r}}_1^\prime {\rm{d}}\mathit{\boldsymbol{r}}_2^\prime } \end{array} (4)

    式中,k=2π/λ是波数,λ是波长; r1r2Z=z平面上两点的位矢; ρ0是球面波在海洋湍流介质中传播后的相干长度,其表示为:

    {\rho _0} = \sqrt {\frac{3}{{{{\rm{ \mathsf{ π} }}^2}{k^2}z\int_0^\infty {{\kappa ^3}} {\mathit{\Phi} _n}(\kappa ){\rm{d}}\kappa }}} (5)

    式中,κ为空间频率。

    本文中所采用的湍流折射率波动的空间功率谱函数Φn(κ)是基于海洋湍流是均匀各向同性的假设,它可以用下式表示[21]:

    \begin{array}{*{20}{c}} {{\mathit{\Phi} _n}(\kappa ) = 0.388 \times {{10}^{ - 8}}{\varepsilon ^{ - 1/3}}{\kappa ^{ - 11/3}} \times }\\ {\left[ {1 + 2.35{{(\kappa \eta )}^{2/3}}} \right]f\left( {\kappa , w, {\chi _T}} \right)} \end{array} (6)

    式中, ε是单位质量液体中的湍流动能的耗散率,取值可以从10-4m2/s3~10-10m2/s3η=10-3m是Kolmogorov微尺度(内尺度),f(κ, w, χT)可以表示为[19]

    \begin{array}{*{20}{c}} {f\left( {\mathit{\boldsymbol{\kappa }}, w, {\mathit{\boldsymbol{\chi }}_T}} \right) = \frac{{{\mathit{\boldsymbol{\chi }}_T}}}{{{w^2}}}\left[ {{w^2}\exp \left( { - {A_T}\delta } \right) + } \right.}\\ {\left. {\exp \left( { - {A_S}\delta } \right) - 2w\exp \left( { - {A_{T, S}}\delta } \right)} \right]} \end{array} (7)

    式中,χT是均方温度耗散率,AT=1.863×10-2, AS=1.9×10-4, AT, S=9.41×10-3, δ=8.284(κη)4/3+12.978(κη)2w是温度和盐度波动的相对强度,其在海洋中的取值为-5~0。

    为计算方便,考虑1维的情况,(4)式可以简化为:

    \frac{{\begin{array}{*{20}{l}} {\hat J\left( {{x_1}, {x_2}, z} \right) = \frac{k}{{2{\rm{ \mathsf{ π} }}z}}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\hat J} } \left( {x_1^\prime , x_2^\prime } \right) \times }\\ {\exp \left[ { - \frac{{{\rm{i}}k}}{{2z}}{{\left( {x_1^\prime - {x_1}} \right)}^2} + \frac{{{\rm{i}}k}}{{2z}}{{\left( {x_2^\prime - {x_2}} \right)}^2}} \right] \times }\\ {\exp \left[ { - \frac{1}{{\rho _0^2}}{{\left( {x_1^\prime - x_2^\prime } \right)}^2}} \right]{\rm{d}}x_1^\prime {\rm{d}}x_2^\prime } \end{array}}}{{}} (8)

    根据(8)式,可以得到光束在输出平面的光强分布为[22]

    I(x, z) = {J_{xx}}(x, x, z) + {J_{yy}}(x, x, z) (9)

    利用数学软件对上述结果进行数值模拟, 计算得到图 2~图 6的结果。如无特殊说明, 计算参量为:w0=1×10-2m,K=4/w02n=2,λ=0.633mm,ε=10-7m2/s3χT=10-9K2/s,w=-2.5。图 2图 3是参量nK选取不相同的数值时,光束相对应的偏振态分布情况。从图上可以看出,当参量nK取值为零时,光束的偏振态分布为均匀分布。然而当参量nK选取的数值不为零时,参量nK发生变化,则光束的偏振态分布也将会发生改变。由此可以看出,参量Kn主要对非均匀偏振光束的偏振度分布产生影响。

    Figure 2. The corresponding polarization distributions of non-uniformly polarized beams with different parameter n (w0=1×10-2m, K=4/w02) a—n=0 b—n=1 c—n=6
    Figure  2.  The corresponding polarization distributions of non-uniformly polarized beams with different parameter n (w0=1×10-2m, K=4/w02) a—n=0 b—n=1 c—n=6
    Figure 3. The corresponding polarization distributions of non-uniformly polarized beams with different parameter K(w0=1×10-2m, n=2) a—K=0 b—K=2/w02 c—K=10/w02
    Figure  3.  The corresponding polarization distributions of non-uniformly polarized beams with different parameter K(w0=1×10-2m, n=2) a—K=0 b—K=2/w02 c—K=10/w02
    Figure 6. Normalized intensity of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2)propagating in the oceanic turbulence with different oceanic parameters
    Figure  6.  Normalized intensity of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2)propagating in the oceanic turbulence with different oceanic parameters

    图 4中给出了不同n值的非均匀偏振光束在海洋中传播到不同距离时的归一化光强分布。计算参量为:w0=1×10-2m,K=4/w02λ=0.633mm,ε=10-7m2/s3χT=10-9K2/s,w=-2.5。由图 4可知,非均匀偏振光束在z=0m处,n取不同值时,光束均为高斯分布。但在海洋中传输较近一段距离后,非均匀偏振光束的光强分布会偏离高斯分布。而随着传输距离的不断增大,在海洋湍流的不断作用下,光源的非均匀偏振特性对光斑的影响越来越小,最后变得可以忽略,光强分布又回到高斯分布。同时也可以看出,当n =0时,光束在海洋湍流传输的过程当中,其归一化光强分布将一直维持高斯分布。

    Figure 4. Normalized intensity of non-uniformly polarized beams with different parameter n at several propagation distances passing in the oceanic turbulence
    Figure  4.  Normalized intensity of non-uniformly polarized beams with different parameter n at several propagation distances passing in the oceanic turbulence

    图 5中给出了不同K值的非均匀偏振光束在海洋湍流中传输到不同距离时的归一化光强分布。从图中可以看出,光束在海洋湍流中传输距离较近时,发现随着参量K的增大,其对光束的光强分布影响越大,偏离初始高斯型分布越明显,但这种影响随着传输距离的增大而减小,最后光强分布又回到了高斯分布。同时也可以看出,当K=0时,光束在海洋湍流传播的过程当中,其归一化光强分布将一直维持高斯分布。

    Figure 5. Normalized intensity of non-uniformly polarized beams with different parameter K at several propagation distances passing in the oceanic turbulence
    Figure  5.  Normalized intensity of non-uniformly polarized beams with different parameter K at several propagation distances passing in the oceanic turbulence

    以上的研究为非均匀偏振光束的光束参量对光强分布的影响,下面来讨论各个海洋湍流参量对非均匀偏振光束在海洋湍流传播的过程当中的光强分布的影响。图 6为非均匀偏振光束在不同海洋湍流中在传输距离z=100m处归一化光强分布。从图 6可以看出,随着χT的增大,ε的减小以及w的增大,非均匀偏振光束的光强分布就会越趋近于高斯分布,也就是说海洋湍流参量对光强分布的影响占主导。

    本文中根据广义的惠更斯-菲涅耳原理,得到非均匀偏振光束经过海洋湍流传输后的光强分布, 并对非均匀偏振光束在海水中传播的传输特性进行了详细的研究。数值模拟结果显示, nK会对非均匀偏振光束的偏振度分布产生影响。当参量nK选取的值为零时,光束的偏振态分布为均匀分布; 而当参量nK选取的数值不为零时,参量nK发生变化,则光束的偏振态分布也将会发生改变。由此可以看出,参量nK主要对非均匀偏振光束的偏振度分布产生影响。当非均匀偏振光束在海洋湍流中传输的距离较近时,发现参量K增大后,其对非均匀偏振光束的光强分布影响越大,偏离初始高斯型分布程度越大。然而,由于传输距离的不断增大,海洋湍流对光束的影响越大,最后非均匀偏振光束的光强分布又回到了高斯分布。此外也发现,随着χT的增大、ε的减小以及w的增大,非均匀偏振光束的光强分布就会越趋近于高斯分布,也就是说海洋湍流参量对光强分布的影响占主导。

  • Figure  1.   a—the initial intensity distribution of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2) b—the corresponding polarization distribution

    Figure  2.   The corresponding polarization distributions of non-uniformly polarized beams with different parameter n (w0=1×10-2m, K=4/w02) a—n=0 b—n=1 c—n=6

    Figure  3.   The corresponding polarization distributions of non-uniformly polarized beams with different parameter K(w0=1×10-2m, n=2) a—K=0 b—K=2/w02 c—K=10/w02

    Figure  6.   Normalized intensity of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2)propagating in the oceanic turbulence with different oceanic parameters

    Figure  4.   Normalized intensity of non-uniformly polarized beams with different parameter n at several propagation distances passing in the oceanic turbulence

    Figure  5.   Normalized intensity of non-uniformly polarized beams with different parameter K at several propagation distances passing in the oceanic turbulence

  • [1]

    KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communications, 2011, 284(7): 1740-1746. DOI: 10.1016/j.optcom.2010.12.024

    [2]

    SHCHEPAKINA E, FARWELL N, KOROTKOVA O. Spectral changes in stochastic light beams propagating in turbulent ocean[J]. Applied Physics, 2011, B105(2): 415-420. DOI: 10.1007/s00340-011-4626-9

    [3]

    FU W Y, ZHANG H M. Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean[J]. Optics Communications, 2013, 304: 11-18. DOI: 10.1016/j.optcom.2013.03.029

    [4]

    FU W Y, ZHANG H M, ZHENG X R. Propagation characteristics of multi-gauss-schell model beams in ocean turbulence[J]. Chinese Journal of Lasers, 2015, 42(s1): 113002(in Chinese). DOI: 10.3788/CJL201542.s113002

    [5]

    TANG M M, ZHAO D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics, 2013, B111(4): 665-670. http://www.tandfonline.com/servlet/linkout?suffix=CIT0013&dbid=16&doi=10.1080%2F09500340.2017.1404652&key=10.1007%2Fs00340-013-5394-5

    [6]

    XU J, TANG M M, ZHAO D M. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence[J]. Optics Communications, 2014, 331: 1-5. DOI: 10.1016/j.optcom.2014.05.053

    [7]

    XU J, ZHAO D M. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence[J]. Optics & Laser Technology, 2014, 57: 189-193. http://cn.bing.com/academic/profile?id=e3b6d7f7ae57cb73b3393cb4ad2c67ad&encoded=0&v=paper_preview&mkt=zh-cn

    [8]

    LU L, JI X, LI X, et al. Influence of oceanic turbulence on propagation characteristics of Gaussian array beams[J]. Optik, 2014, 125(24):7154-7161. DOI: 10.1016/j.ijleo.2014.07.113

    [9]

    YANG T, JI X L, LI X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence[J]. Acta Physica Sinica, 2015, 64(20): 204206 (in Chi-nese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201520023

    [10]

    PU H, JI X L, YANG T. Spatial coherence of partially coherent annular beams in ocean turbulence[J]. Acta Optica Sinica, 2015, 35(s1):101002 (in Chinese). DOI: 10.3788/AOS201535.s101002

    [11]

    HUANG Y, HUANG P, WANG F, et al. The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams[J]. Optics Communications, 2015, 336:146-152. DOI: 10.1016/j.optcom.2014.09.055

    [12]

    XU K T, YUAN Y Sh, FENG X, et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. Laser Technology, 2015, 39(6): 877-884(in Chinese). http://cn.bing.com/academic/profile?id=fa7f72a00d0eec03b879bf7e63980eae&encoded=0&v=paper_preview&mkt=zh-cn

    [13]

    JIANG Q Ch, SU Y L, NIE H X, et al. Propagation characteristics of Hermite-Gaussian beam in saturable nonlinear media[J]. Laser Technology, 2018, 42(1): 141-144(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801028

    [14]

    LIU Y X, CHEN Z Y, PU J X. Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence[J]. Acta Physica Sinica, 2017, 66(12): 124205(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201712018

    [15]

    LIU D J, WANG Y Ch. Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence[J]. Optics & Laser Technology, 2016, 103: 33-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ae4115dd63239afdfc319d995700e1a6

    [16]

    LIU D J, YIN H M, WANG G Q, et al. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence[J]. Applied Optics, 2017, 56(31): 8785- 8792. DOI: 10.1364/AO.56.008785

    [17]

    NIU Ch J, LU F, HAN X E. Propagation properties of gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 36(6): 0601004(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201806004

    [18]

    GORI F, SANTARSIERO M, BORGHI R, et al. Use of the van Cittert-ernike theorem for partially polarized sources[J]. Optics Letters, 2000, 25(17): 1291-1293. DOI: 10.1364/OL.25.001291

    [19]

    PU J X, LU B. Focal shifts in focused nonuniformly polarized beams[J]. Journal of The Optical Society of America, 2001, A18(11): 2760-2766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=747f5b94dc514c2a33f9942ce928ae00

    [20]

    WANG T, PU J X. Propagation of non-uniformly polarized beams in a turbulent atmosphere[J]. Optics Communications, 2008, 281(14): 3617-3622. DOI: 10.1016/j.optcom.2008.03.081

    [21]

    NIKISHOV V V, NIKISHOV V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1):82-98. DOI: 10.1615/InterJFluidMechRes.v27.i1.70

    [22]

    GORI F, SANTARSIERO M, BORGHI R, et al. The irradiance of partially polarized beams in a scalar treatment[J]. Optics Communications, 1999, 163(4/6): 159-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=690db99b4452d96714b12659364602b1

  • 期刊类型引用(6)

    1. 陈永豪,刘晓云,蒋金洋,高思宇,刘颖,柴腾飞,姜月秋. 基于改进Xception实现涡旋光束轨道角动量识别. 光子学报. 2024(04): 80-90 . 百度学术
    2. 孙顺红,刘永欣. 径向偏振高阶贝塞尔-高斯涡旋光束在海洋湍流中的传输特性. 宁夏大学学报(自然科学版). 2024(02): 138-143 . 百度学术
    3. 张光辉,黄宇星,黄平,周辽,焦辉,龙芋宏. 水导激光技术中水-光耦合传能规律研究. 激光技术. 2022(06): 749-754 . 本站查看
    4. 李丹,孙云飞. 散射光束空间光强分布检测方法仿真. 计算机仿真. 2022(11): 309-313 . 百度学术
    5. 高金全,周正兰,徐华锋,吴彬,屈军. 部分相干Airy涡旋光束在非Kolmogorov谱中的模态强度. 激光技术. 2021(04): 522-529 . 本站查看
    6. 杨林帆,焦辉,黄宇星,梁恩,龙芋宏. 基于水导激光平面缩流喷嘴内流场仿真研究. 激光技术. 2020(06): 754-761 . 本站查看

    其他类型引用(1)

图(6)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-06-20
  • 发布日期:  2020-05-24

目录

/

返回文章
返回