-
假设一非均匀偏振(nonuniformly polarized, NUP)光束在光源平面的场可以表示为[18]:
$ \mathit{\boldsymbol{J}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right) = \left[ {\begin{array}{*{20}{l}} {{J_{xx}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)}&{{J_{xy}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)}\\ {{J_{yx}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)}&{{J_{yy}}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right)} \end{array}} \right] $
(1) $ \begin{array}{*{20}{c}} {{J_{\alpha \beta }}\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right) = \left\langle {E_\alpha ^*\left( {\mathit{\boldsymbol{r}}_1^\prime , t} \right){E_\beta }\left( {\mathit{\boldsymbol{r}}_2^\prime , t} \right)} \right\rangle , }\\ {(\alpha , \beta = x, y)} \end{array} $
(2) 式中,r1′,r2′是光源平面的位置矢量,Ex(r′, t), Ey(r′, t)是场的直角坐标分量,*表示复共轭,〈〉表示系综平均。本文中采用参考文献[21]中非均匀偏振光束的场的直角坐标分量为:
$ \left\{ {\begin{array}{*{20}{l}} {{E_x}\left( {{\mathit{\boldsymbol{r}}^\prime }, \theta } \right) = \exp \left( { - \frac{{{\mathit{\boldsymbol{r}}^{\prime 2}}}}{{w_0^2}}} \right){{\left( {\frac{1}{{1 + {{\left( {K{\mathit{\boldsymbol{r}}^{\prime 2}}} \right)}^n}}}} \right)}^{1/2}}}\\ {{E_y}\left( {{\mathit{\boldsymbol{r}}^\prime }, \theta } \right) = \exp \left( { - \frac{{{\mathit{\boldsymbol{r}}^{\prime 2}}}}{{w_0^2}}} \right){{\left[ {\frac{{{{\left( {K{\mathit{\boldsymbol{r}}^{\prime 2}}} \right)}^n}}}{{1 + {{\left( {K{\mathit{\boldsymbol{r}}^{\prime 2}}} \right)}^n}}}} \right]}^{1/2}}} \end{array}} \right. $
(3) 式中,w0代表光束束腰半径,K是比例系数,n是幂指数,K和n会影响非均匀偏振光束的偏振度分布。图 1是非均匀偏振光束的初始光强分布及对应的偏振态分布。光束参量分别为w0=1×10-2m,K=4/w02,n=2。
Figure 1. a—the initial intensity distribution of a non-uniformly polarized beam (w0=1×10-2m, K=4/w02, n=2) b—the corresponding polarization distribution
当此光束在海洋中传输时,根据广义的惠更斯-菲涅耳原理,利用源平面的交叉谱密度矩阵元可得到在海洋湍流中传输到Z=z平面的交叉谱密度为[7]:
$ \begin{array}{*{20}{c}} {\hat J\left( {{\mathit{\boldsymbol{r}}_\mathit{\boldsymbol{1}}}, {\mathit{\boldsymbol{r}}_2}, z} \right) = \frac{{{k^2}}}{{4{\pi ^2}{z^2}}}\int {\hat J\left( {\mathit{\boldsymbol{r}}_1^\prime , \mathit{\boldsymbol{r}}_2^\prime } \right) \times } }\\ {\exp \left[ { - \frac{{{\rm{i}}k}}{{2z}}{{\left( {\mathit{\boldsymbol{r}}_1^\prime - {\mathit{\boldsymbol{r}}_1}} \right)}^2} + \frac{{{\rm{i}}k}}{{2z}}{{\left( {\mathit{\boldsymbol{r}}_2^\prime - {\mathit{\boldsymbol{r}}_2}} \right)}^2}} \right] \times }\\ {\exp \left[ { - \frac{1}{{\rho _0^2}}{{\left( {\mathit{\boldsymbol{r}}_1^\prime - \mathit{\boldsymbol{r}}_2^\prime } \right)}^2}} \right]{\rm{d}}\mathit{\boldsymbol{r}}_1^\prime {\rm{d}}\mathit{\boldsymbol{r}}_2^\prime } \end{array} $
(4) 式中,k=2π/λ是波数,λ是波长; r1,r2是Z=z平面上两点的位矢; ρ0是球面波在海洋湍流介质中传播后的相干长度,其表示为:
$ {\rho _0} = \sqrt {\frac{3}{{{{\rm{ \mathsf{ π} }}^2}{k^2}z\int_0^\infty {{\kappa ^3}} {\mathit{\Phi} _n}(\kappa ){\rm{d}}\kappa }}} $
(5) 式中,κ为空间频率。
本文中所采用的湍流折射率波动的空间功率谱函数Φn(κ)是基于海洋湍流是均匀各向同性的假设,它可以用下式表示[21]:
$ \begin{array}{*{20}{c}} {{\mathit{\Phi} _n}(\kappa ) = 0.388 \times {{10}^{ - 8}}{\varepsilon ^{ - 1/3}}{\kappa ^{ - 11/3}} \times }\\ {\left[ {1 + 2.35{{(\kappa \eta )}^{2/3}}} \right]f\left( {\kappa , w, {\chi _T}} \right)} \end{array} $
(6) 式中, ε是单位质量液体中的湍流动能的耗散率,取值可以从10-4m2/s3~10-10m2/s3,η=10-3m是Kolmogorov微尺度(内尺度),f(κ, w, χT)可以表示为[19]:
$ \begin{array}{*{20}{c}} {f\left( {\mathit{\boldsymbol{\kappa }}, w, {\mathit{\boldsymbol{\chi }}_T}} \right) = \frac{{{\mathit{\boldsymbol{\chi }}_T}}}{{{w^2}}}\left[ {{w^2}\exp \left( { - {A_T}\delta } \right) + } \right.}\\ {\left. {\exp \left( { - {A_S}\delta } \right) - 2w\exp \left( { - {A_{T, S}}\delta } \right)} \right]} \end{array} $
(7) 式中,χT是均方温度耗散率,AT=1.863×10-2, AS=1.9×10-4, AT, S=9.41×10-3, δ=8.284(κη)4/3+12.978(κη)2,w是温度和盐度波动的相对强度,其在海洋中的取值为-5~0。
为计算方便,考虑1维的情况,(4)式可以简化为:
$ \frac{{\begin{array}{*{20}{l}} {\hat J\left( {{x_1}, {x_2}, z} \right) = \frac{k}{{2{\rm{ \mathsf{ π} }}z}}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\hat J} } \left( {x_1^\prime , x_2^\prime } \right) \times }\\ {\exp \left[ { - \frac{{{\rm{i}}k}}{{2z}}{{\left( {x_1^\prime - {x_1}} \right)}^2} + \frac{{{\rm{i}}k}}{{2z}}{{\left( {x_2^\prime - {x_2}} \right)}^2}} \right] \times }\\ {\exp \left[ { - \frac{1}{{\rho _0^2}}{{\left( {x_1^\prime - x_2^\prime } \right)}^2}} \right]{\rm{d}}x_1^\prime {\rm{d}}x_2^\prime } \end{array}}}{{}} $
(8) 根据(8)式,可以得到光束在输出平面的光强分布为[22]:
$ I(x, z) = {J_{xx}}(x, x, z) + {J_{yy}}(x, x, z) $
(9)
非均匀偏振光束在海洋湍流中的光强特性
Intensities of non-uniformly polarized beams in the oceanic turbulence
-
摘要: 为了研究非均匀偏振光束在海洋湍流中的光强特性,采用广义的惠更斯-菲涅耳原理,得到非均匀偏振光束经过海洋湍流传输后的光强分布, 并对非均匀偏振光束在海水中传播的传输特性进行了研究。结果表明,非均匀偏振光束的参量n和K越大,其光强分布偏离高斯分布越明显,但随着传输距离的增大,海洋湍流对光束的影响也增大,光强分布又回到高斯分布;随着均方温度耗散率χT或温度与盐度波动的相对强度w的增大,或者单位质量液体中的湍流动能的耗散率ε的减小,非均匀偏振光束的光强分布就会更趋于高斯分布。该研究结果在海洋光通信以及成像方面存在潜在的应用价值。Abstract: In order to study the intensity characteristics of non-uniformly polarized beams in ocean turbulence, the intensity distribution of the non-uniformly polarized (NUP) beams propagating in the oceanic turbulence was obtained by using the extended Huygens-Fresnel diffraction integral formula. The intensity characteristics of the non-uniformly polarized beams propagating in the seawater were investigated in great detail. It is found that the larger the parameters n and K of the non-uniformly polarized beam are, the more obvious the intensity distribution deviates from the Gaussian distribution. However, with the increase of the propagation distance in the ocean, the intensity distribution returns to the Gaussian distribution under the influence of the oceanic turbulence. In addition, the results also show that the larger the χT is, or the smaller the ε is, or the larger the w is, the more the intensity distribution tends to be Gaussian distribution. The research results have potential application value in ocean optical communication and imaging.
-
-
[1] KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communications, 2011, 284(7): 1740-1746. doi: 10.1016/j.optcom.2010.12.024 [2] SHCHEPAKINA E, FARWELL N, KOROTKOVA O. Spectral changes in stochastic light beams propagating in turbulent ocean[J]. Applied Physics, 2011, B105(2): 415-420. [3] FU W Y, ZHANG H M. Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean[J]. Optics Communications, 2013, 304: 11-18. doi: 10.1016/j.optcom.2013.03.029 [4] FU W Y, ZHANG H M, ZHENG X R. Propagation characteristics of multi-gauss-schell model beams in ocean turbulence[J]. Chinese Journal of Lasers, 2015, 42(s1): 113002(in Chinese). doi: 10.3788/CJL201542.s113002 [5] TANG M M, ZHAO D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics, 2013, B111(4): 665-670. [6] XU J, TANG M M, ZHAO D M. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence[J]. Optics Communications, 2014, 331: 1-5. doi: 10.1016/j.optcom.2014.05.053 [7] XU J, ZHAO D M. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence[J]. Optics & Laser Technology, 2014, 57: 189-193. [8] LU L, JI X, LI X, et al. Influence of oceanic turbulence on propagation characteristics of Gaussian array beams[J]. Optik, 2014, 125(24):7154-7161. doi: 10.1016/j.ijleo.2014.07.113 [9] YANG T, JI X L, LI X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence[J]. Acta Physica Sinica, 2015, 64(20): 204206 (in Chi-nese). [10] PU H, JI X L, YANG T. Spatial coherence of partially coherent annular beams in ocean turbulence[J]. Acta Optica Sinica, 2015, 35(s1):101002 (in Chinese). doi: 10.3788/AOS201535.s101002 [11] HUANG Y, HUANG P, WANG F, et al. The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams[J]. Optics Communications, 2015, 336:146-152. doi: 10.1016/j.optcom.2014.09.055 [12] XU K T, YUAN Y Sh, FENG X, et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. Laser Technology, 2015, 39(6): 877-884(in Chinese). [13] JIANG Q Ch, SU Y L, NIE H X, et al. Propagation characteristics of Hermite-Gaussian beam in saturable nonlinear media[J]. Laser Technology, 2018, 42(1): 141-144(in Chinese). [14] LIU Y X, CHEN Z Y, PU J X. Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence[J]. Acta Physica Sinica, 2017, 66(12): 124205(in Chinese). [15] LIU D J, WANG Y Ch. Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence[J]. Optics & Laser Technology, 2016, 103: 33-41. [16] LIU D J, YIN H M, WANG G Q, et al. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence[J]. Applied Optics, 2017, 56(31): 8785- 8792. doi: 10.1364/AO.56.008785 [17] NIU Ch J, LU F, HAN X E. Propagation properties of gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 36(6): 0601004(in Chinese). [18] GORI F, SANTARSIERO M, BORGHI R, et al. Use of the van Cittert-ernike theorem for partially polarized sources[J]. Optics Letters, 2000, 25(17): 1291-1293. doi: 10.1364/OL.25.001291 [19] PU J X, LU B. Focal shifts in focused nonuniformly polarized beams[J]. Journal of The Optical Society of America, 2001, A18(11): 2760-2766. [20] WANG T, PU J X. Propagation of non-uniformly polarized beams in a turbulent atmosphere[J]. Optics Communications, 2008, 281(14): 3617-3622. doi: 10.1016/j.optcom.2008.03.081 [21] NIKISHOV V V, NIKISHOV V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1):82-98. doi: 10.1615/InterJFluidMechRes.v27.i1.70 [22] GORI F, SANTARSIERO M, BORGHI R, et al. The irradiance of partially polarized beams in a scalar treatment[J]. Optics Communications, 1999, 163(4/6): 159-163.