-
半钢化玻璃中的应力会表现出双折射的特性[11],根据国家标准GB903-87规定,可以通过光学玻璃的应力双折射(nm/cm),即主应力方向上单位厚度的双折射光程差σ表征应力:
$ \sigma = \Delta /d $
(1) 式中, Δ是应力双折射光程差,d是玻璃样品的厚度。一般很难对Δ进行直接测量,而是通过o光、e光的相位差δ间接求得,关系为:
$ \Delta = \delta \lambda (2{\rm{ \mathsf{ π} }}) $
(2) 式中, λ为波长。由(1)式和(2)式可以得到o光和e光的相位差与玻璃的应力双折射之间的关系:
$ \sigma = \delta \lambda (2{\rm{ \mathsf{ π} }}d) $
(3) 三镜腔理论模型于1988年由GROOT等研究人员建立[12],理论模型如图 2所示。
图中初始光场分为两个部分,一部分被腔镜M1直接反射回腔内,一部分透过M1后被回馈镜M2反射回腔内,此时两光场相互叠加。将M1,M2等效腔镜与腔镜M3构成F-P腔,等效腔镜的反射系数为:
$ {r_{{\rm{eff}}}} = {r_1} + {r_2}t_1^2\exp ({\rm{i}}2kl) $
(4) 式中, r1, r2分别为M1, M2的反射系数,t1是腔镜M1的透射系数,l为回馈腔腔长,k=2π/λ, 由此可得等效
腔镜的反射率为:
$ {R_{{\rm{eff}}}} = {\left| {{r_{{\rm{eff}}}}} \right|^2} = r_1^2 + 2{r_1}{r_2}t_1^2\cos (2kl) + {({r_2}t_1^2)^2} $
(5) 当回馈腔中放入存在应力的样品时,回馈腔分为两个不同的物理腔长,样品产生的相位差为δ,o光和e光两个方向上有不同的外腔光程,o光和e光的等效反射率分别为:
$ \left\{ \begin{array}{l} {R_{{\rm{0, eff}}}} = {R_1} + 2{r_1}{r_2}t_1^2\cos (2kl)\\ {R_{{\rm{e, eff}}}} = {R_1} + 2{r_1}{r_2}t_1^2\cos (2kl + 2\delta ) \end{array} \right. $
(6) 式中, R1为M1强度反射率。(6)式表示测量系统中回馈腔的作用等价于腔镜反射率的变化,此时则能在激光腔内利用半经典的气体激光器理论研究激光回馈效应[13]。
如图 3所示,设o光方向为x方向,e光方向为y方向,当激光器本征偏振态为x方向时,偏振态x的等效反射率等于正常激光回馈反射率,即Rx-x, eff=Rx, eff, 此时y偏振光未进入外腔,等效反射率等于腔镜反射率,即Rx-y, eff=R1。同理可得,当本征偏振态为y方向时,Ry-y, eff=Ry, eff, Ry-x, eff=R1。一般情况下,出射光的偏振方向取决于两个偏振态的损耗,在本文中可近似认为,激光器本征偏振态的等效反射率决定其相应的损耗大小,等效反射率越小,损耗越大,该偏振态在模式竞争中则处于劣势,较难起振[14]。当激光器本征偏振态为x方向时,AB段Rx-x, eff>R1, 出射光为x偏振态; B点以后,Rx-x, eff < R1, 出射光跳变成y偏振态,BC段Ry-y, eff>R1, 出射光保持y偏振态; CD段Ry-y, eff < R1,出射光应该跳变成x偏振态,但是由于Rx-x, eff<R1,此时偏振态取决于Ry-y, eff和Rx-x, eff大小,因为Ry-y, eff>Ry-y, eff, 故出射光仍为y偏振态,同理DE段偏振态为x偏振态,以此类推可得光强信号曲线。基于上述原理当两个偏振态的等效反射率受到回馈腔腔长的调制时,得到如图 4所示的完整的调制曲线。
图 4中光强信号和偏振态信号由D1和D2探测,当压电陶瓷(piezoelectric ceramic, PZT)扫描外腔时,o光和e光交替出现,若将探测器D2放大至饱和状态,偏振态信号则被整形成方波[15]。一个调谐周期中包含几个特征点,a点、d点为光强最小点,c点、b点为等光强点,b点为偏振跳变点。光强曲线上的a点、b点、c点、d点分别对应o光和e光曲线上的A点、B点、C点、D点。在回馈腔中激光两次经过样品,B-C点的相位差是样品相位差的两倍,A-D点为一个间隔为2π的调谐周期。由此可得相位差与偏振跳变点的关系式:
$ \delta = {\rm{ \mathsf{ π} }}{l_{bc}}/{l_{ad}} $
(7) 由于o光、e光之间的相位差是由样品中的应力引起,故样品的应力双折射可表示为:
$ \sigma = \lambda {l_{bc}}(2d{l_{ad}}) $
(8) 式中, σ为样品的应力双折射大小,λ为波长,d为样品厚度,lbc和lad分别表示b点、c点之间的长度和a点、d点之间的长度。
-
选用厂家生产的长20cm、宽8cm、厚0.3cm的半钢化玻璃作为样品,如图 7所示。
将样品放置在自动载物台上,以样品的一端点作为原点建立坐标系,在a区域中坐标为(0.5,0.5)cm处重复测量10次以评估系统重复性,测量结果如图 8所示。单点测量最大偏差为6.7nm/cm, 标准差为2.52nm/cm。
在上述测量过程中作者注意到电箱的输出电压存在漂移和波动的现象,导致压电陶瓷扫描外腔时的驱动电压不稳定,对测量结果的精确度与重复性产生较大影响。经过排除电箱中电源模块及信号放大模块等影响因素后,认为在相同时间内,电箱较大的电压变化梯度会导致其稳定性下降。因此为平衡电箱稳定性与电压输出范围的关系,通过增大控制电压的时间间隔降低输出电压的变化梯度,使电箱持续稳定地为器件供电。
在改善电箱的稳定性能后,继续在a, b, c, d 4个边缘区域中选择A点(0.5,0.5)cm、B点(19.5,0.5)cm、C点(0.5,7.5)cm、D点(19.5,7.5)cm作为测量点进行10次重复测量,记录各次测量的应力双折射平均值与极值,测量结果如表 1所示。
Table 1. Stress birefringence measurement data of semi-tempered glass (1)
times the stress value of the sample/(nm·cm-1) point A point B point C point D 1 817.9 880.6 867.4 801.9 2 815.8 879.6 866.9 801.4 3 815.3 879.1 866.3 800.7 4 819.5 878.9 867.1 796.8 5 817.8 879.9 868.6 798.8 6 818.3 882.5 865.4 798.6 7 818.5 878.6 866.8 798.8 8 817.9 882.3 867.3 799.5 9 814.6 879.7 864.7 800.8 10 814.9 880.9 866.5 798.3 minimum 814.6 878.6 864.7 796.8 maximum 819.5 882.5 868.6 801.9 mean 817.05 880.21 886.7 799.56 standard deviation 1.73 1.35 1.08 1.60 由表中数据可知,4个测量点的应力双折射值均在半钢化玻璃国家标准[19]中规定的624nm/cm~1794nm/cm范围内,样品属于合格的半钢化玻璃。其中单点最大偏差为5.1nm/cm,最大标准差为1.73nm/cm,多次测量结果的重复性较好。为检测系统长期工作的重复性与稳定性,随机选取同一批次中的另一块半钢化玻璃作为实验样品,重复上述测量过程,测量结果如表 2所示。
Table 2. Stress birefringence measurement data of semi-tempered glass (2)
times the stress value of the sample/(nm·cm-1) point A point B point C point D 1 817.2 879.1 797.6 864.4 2 816.8 882.7 797.6 865.4 3 817.9 880.2 798.5 865.0 4 817.2 881.5 800.1 865.1 5 813.4 880.1 797.0 863.7 6 818.2 881.2 802.6 861.4 7 817.9 879.5 796.9 864.7 8 816.3 879.9 799.0 867.3 9 819.5 880.6 796.8 863.8 10 818.0 882.8 798.3 863.6 minimum 813.4 879.1 796.8 861.4 maximum 819.5 882.8 802.6 867.3 mean 817.24 880.76 798.44 864.44 standard deviation 1.61 1.27 1.79 1.52 同样,测量结果验证了该样品符合国家标准规定,该次测量的单点最大偏差为6.1nm/cm,标准差为1.79nm/cm,重复性较好。综合两组不同样品的测试结果进行对比,4个测试点中的单次测量最小偏差为3.7nm/cm, 偏差最大为6.1nm/cm, 造成测量偏差的原因除了测试环境的细微差别外,还有激光器自身特性的微小变化[20],均属于正常的随机误差范围,测量结果标准差平均低于2.0nm/cm,在一定程度上达到稳定测量的要求。
激光回馈半钢化玻璃应力双折射测量技术
Stress birefringence measurement technology of heat strengthened glass based on laser feedback
-
摘要: 为了快速准确地测量半钢化玻璃的应力双折射大小,实时监测产品质量,结合半经典理论与三镜腔理论模型,研究了基于激光回馈效应的半钢化玻璃应力双折射自动测量技术。测量装置由精密光学元件及运动平台组合搭建,由偏振光低电平的占空比自动判断样品主应力方向,测量效率较高; 采用降低输入电压变化梯度的方法,将输出电压控制在较小的范围内波动,提高了压电陶瓷位移稳定性。结果表明,样品应力双折射的大小由调谐曲线上一个偏振跳变周期内偏振跳变点的位置决定,多次测量的最大偏差为6.1nm/cm,标准差低于2.0nm/cm。该技术具有测量周期短、精度高且重复性好等特点,适用于实际生产中。Abstract: In order to measure the stress birefringence of heat strengthened glass quickly and accurately, and to monitor the product quality in real time, the automatic stress birefringence measurement technology of heat strengthened glass based on laser feedback was studied by combining the semi-classical theory and the three-mirror cavity theory model. The measuring equipment was composed of precision optical elements and motion platform, and the main stress direction of the sample was automatically judged by calculating the duty cycle of the low level of polarized light. The measurement efficiency was improved; The fluctuation range of output voltage was controlled within a narrow range by reducing the gradient of input voltage change, which improves displacement stability of piezoelectric ceramics. The experimental results show that the value of the stress birefringence of the sample is determined by the position of the flipping point in a polarization flipping period on the tuning curve. The maximum deviation of multiple measurements is 6.1nm/cm and the standard deviation is less than 2.0nm/cm in multiple measurements. Such technology has the characteristics of short measurement period, high precision and good repeatability, which is suitable for practical production.
-
Table 1. Stress birefringence measurement data of semi-tempered glass (1)
times the stress value of the sample/(nm·cm-1) point A point B point C point D 1 817.9 880.6 867.4 801.9 2 815.8 879.6 866.9 801.4 3 815.3 879.1 866.3 800.7 4 819.5 878.9 867.1 796.8 5 817.8 879.9 868.6 798.8 6 818.3 882.5 865.4 798.6 7 818.5 878.6 866.8 798.8 8 817.9 882.3 867.3 799.5 9 814.6 879.7 864.7 800.8 10 814.9 880.9 866.5 798.3 minimum 814.6 878.6 864.7 796.8 maximum 819.5 882.5 868.6 801.9 mean 817.05 880.21 886.7 799.56 standard deviation 1.73 1.35 1.08 1.60 Table 2. Stress birefringence measurement data of semi-tempered glass (2)
times the stress value of the sample/(nm·cm-1) point A point B point C point D 1 817.2 879.1 797.6 864.4 2 816.8 882.7 797.6 865.4 3 817.9 880.2 798.5 865.0 4 817.2 881.5 800.1 865.1 5 813.4 880.1 797.0 863.7 6 818.2 881.2 802.6 861.4 7 817.9 879.5 796.9 864.7 8 816.3 879.9 799.0 867.3 9 819.5 880.6 796.8 863.8 10 818.0 882.8 798.3 863.6 minimum 813.4 879.1 796.8 861.4 maximum 819.5 882.8 802.6 867.3 mean 817.24 880.76 798.44 864.44 standard deviation 1.61 1.27 1.79 1.52 -
[1] LIU T T, HOU Y Zh, TAN J Zh.Quality control of tempered and semi-tempered vacuum glass[J]. Electronic Glass Technology, 2015, 47(19):48-50(in Chinese). [2] WANG D M, ZHANG K, ZHANG Zh B. Selection and application of tempering and semi tempering of curtain wall glass[J]. Research on Urban Construction Theory, 2013, 10 (6): 127(in Chinese). [3] ZHAO X A. Curtain wall can be made of semi-toughened glass[J]. Doors & Windows, 2008, 12(12): 1-3(in Chinese). [4] GENERAL ADMINISTRATION OF QUALITY SUPERVISION, INSPECTION AND QUARANTINE OF THE PEOPLE'S REPUBLIC of CHILNA, STANDARDIZATION ADMINISTRATION OF THE PEOPLE′S REPUBLIC OF CHINA. GB15763.3-2009 National Standard of the People's Republic of China—Ssfety glazing materials in building[S].Beijing: Standards Press of China, 2009: 3-5(in Chinese). [5] MU H Y, HU W, CHEN F H, et al. Application of optical waveguide effect in measurement of surface stress in chemically strengthened glass[J]. Glass & Enamel, 2017, 45(4):6-12(in Chinese). [6] CHEN L, ZHANG Q H, MAO W M. Analysis and calculation of residual stress and its distribution by two-dimensional X-ray diffraction[J]. Transactions of Materials and Heat Treatment, 2006, 27(1): 120-123 (in Chinese). [7] ZHOU T H.Measuring method of stress in glass[J].Glass & Enamel, 2001, 29 (6):44-47(in Chinese). [8] ZHANG P, TAN Y D, LIU W X, et al. Methods for optical phase retardation measurement: A review[J]. Science China, 2013, 56(5):1155-1164. doi: 10.1007/s11431-013-5207-4 [9] CHEN W, LI H, ZHANG Sh L, et al. Measurement of phase retardation of waveplate online based on laser feedback[J]. Review of Scientific Instruments, 2012, 83(1):013101. doi: 10.1063/1.3673641 [10] FEI L, ZHANG Sh L, LI Y, et al. Polarization control in a He-Ne laser using birefringence feedback[J]. Optics Express, 2005, 13(8):3117-3122. doi: 10.1364/OPEX.13.003117 [11] WU Y, TAN Y D, ZHANG Sh L, et al. Polarization characteristics of He-Ne laser with different directions of polarized feedback[J]. Applied Optics, 2013, 52(22):5371-5375. doi: 10.1364/AO.52.005371 [12] GROOT P J, GALLATIN G M, MACOMBER S H. Ranging and velocimetry signal generation in a backscatter-modulated laser diode[J]. Applied Optics, 1988, 27(21):4475-4480. doi: 10.1364/AO.27.004475 [13] CUI L, ZHANG Sh L. Semi-classical theory model for feedback effect of orthogonally polarized dual frequency He-Ne laser[J]. Optics Express, 2005, 13(17):6558-6563. doi: 10.1364/OPEX.13.006558 [14] LIU W X, ZHANG Sh L, DING M, et al. Error analysis and experimental testing of measuring wave plate based on laser frequency splitting[J].Opto-electronic Engineering, 2010, 37(2):54-59(in Ch-inese). [15] NIU H Sh, NIU Y X, LI J Y.Measurement of stress-induced birefringence in glasses based on reflective laser feedback effect[J].Optical Engineering, 2017, 56(2):024104. doi: 10.1117/1.OE.56.2.024104 [16] LI J Y, NIU Y X, NIU H Sh. Measurement of phase retardation of optical multilayer films based on laser feedback system[J]. Optics Express, 2016, 24(1):409-416. doi: 10.1364/OE.24.000409 [17] DENG Y, MA X.Automatic positioning of optical axis of wave-plate in a laser feedback birefringence measurement system[J].Laser Technology, 2019, 43(2):217-221(in Chinese). [18] WEI Zh M, YANG K Y. Controller of multi-axis motorized optical stages based on DAQ card and multiplexer[J].Laser Journal, 2010, 31(5):38-39 (in Chinese). [19] GENERAL ADMINISTRATION OF QUALITY SUPERVISION, INSPECTION AND QUARANTINE OF THE PEOPLE'S REPUBLIC OF CHINA, STANDARDIZATION ADMINISTRATION OF THE PEOPLE′S REPUBLIC OF CHINA. GB/T17841-2008 National Standard of the People's Republic of China—Heat-strengthened glass[S]. Beijing: Standards Press of China, 2008: 2-3(in Chinese). [20] ZHANG Sh L. Laser feedback technology and development[J]. Laser & Optoelectronics Progress, 2007, 44(11):65-71(in Chinese).