-
基于SPBS的偏光干涉系统结构如图 1所示。包括前置准直系统、偏振棱镜P1、SPBS、偏振棱镜P2、成像物镜L3以及探测器CCD。前置准直系统由透镜L1、光阑M和透镜L2组成。P1和P2的透振方向在x-O-y面内,与x轴正方向的夹角分别是θ1和θ2,SPBS光轴方向在x-O-z面内,光经过前置准直光学系统进入P1,透射光变为光矢量振动方向与x轴成角θ1的线偏振光,经过SPBS后,出射光分为两束光矢量振动方向互相垂直的两束线偏振光,两束光传输方向平行,并且具有一定的横向剪切差,两束光光矢量的振动方向分别沿x轴和y轴,通过检偏器P2(光矢量振动方向为与x轴成角θ2)使两束线偏振光的振动方向相同,最后两束光经过会聚透镜L3后,在其焦平面处形成干涉条纹[15]。
-
考虑起偏器P1、检偏器P2的透振方向与x轴夹角分别是θ1和θ2,则二者对应的琼斯矩阵分别是JP1和JP2,SPBS可以等效为两个正交线偏振器的组合,两个线偏振器的琼斯矩阵分别为JSPBS(0°)和JSPBS(90°)。若入射光为完全非偏振光,光强为2I0,通过起偏器P1后,成为光强为I0的线偏振光,光矢量振动方向是θ1,此时电场的Jones矢量可以表示为:
$ [\mathit{\boldsymbol{E}}(t)] = \left[ {\begin{array}{*{20}{l}} {{E_x}}\\ {{E_y}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{E}}(t){\rm{cos}}{\theta _1}}\\ {\mathit{\boldsymbol{E}}(t){\rm{sin}}{\theta _1}} \end{array}} \right] $
(1) $ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{E}}_1} = {\mathit{\boldsymbol{J}}_{{{\rm{P}}_{\rm{2}}}}}{\mathit{\boldsymbol{J}}_{{\rm{SPBS(}}{{\rm{0}}^{\rm{^\circ }}}{\rm{)}}}}{\rm{exp}}({\rm{i}}{\phi _x})\mathit{\boldsymbol{E}}}\\ {{\mathit{\boldsymbol{E}}_2} = {\mathit{\boldsymbol{J}}_{{{\rm{P}}_{\rm{2}}}}}{\mathit{\boldsymbol{J}}_{{\rm{SPBS(9}}{{\rm{0}}^{\rm{^\circ }}}{\rm{)}}}}{\rm{exp}}({\rm{i}}{\phi _y})\mathit{\boldsymbol{E}}} \end{array}} \right. $
(2) 式中, E1, E2分别为e光和o光经过检偏器P2的复振幅; ϕx, ϕy分别为e光和o光经SPBS后所产生的相位延迟; E为经过起偏器P1的光矢量E(t)的复振幅。将各偏振元器件的Jones矩阵代入上式[16],可得系统出射两束光的复振幅分别为:
$ \begin{array}{*{20}{l}} {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{E}}_1} = {\mathit{\boldsymbol{J}}_{{{\rm{P}}_{\rm{2}}}({\theta _2})}}{\mathit{\boldsymbol{J}}_{{\rm{SPBS(}}{{\rm{0}}^{\rm{^\circ }}}{\rm{)}}}}{\rm{exp}}({\rm{i}}{\phi _x})\mathit{\boldsymbol{E}} = }\\ {\left[ {\begin{array}{*{20}{c}} {{\rm{co}}{{\rm{s}}^2}{\theta _2}}&{{\rm{sin}}{\theta _2}{\rm{cos}}{\theta _2}}\\ {{\rm{sin}}{\theta _2}{\rm{cos}}{\theta _2}}&{{\rm{si}}{{\rm{n}}^2}{\theta _2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\exp (i{\phi _x})}&0\\ 0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{E_x}}\\ {{E_y}} \end{array}} \right] = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{cos}}{\theta _1}{\rm{cos}}{\theta _2}[{E_x}\cos {\theta _1} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {E_y}{\rm{sin}}{\theta _1}]{\rm{exp}}({\rm{i}}{\phi _x})\left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\theta _2}}\\ {{\rm{sin}}{\theta _2}} \end{array}} \right]} \end{array} $
(3) $ \begin{array}{*{20}{l}} {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{E}}_1} = {\mathit{\boldsymbol{J}}_{{{\rm{P}}_{\rm{1}}}({\theta _2})}}{\mathit{\boldsymbol{J}}_{{\rm{SPBS(9}}{{\rm{0}}^{\rm{^\circ }}}{\rm{)}}}}{\rm{exp}}({\rm{i}}{\phi _y})\mathit{\boldsymbol{E}} = }\\ {\left[ {\begin{array}{*{20}{c}} {{\rm{co}}{{\rm{s}}^2}{\theta _2}}&{{\rm{sin}}{\theta _2}{\rm{cos}}{\theta _2}}\\ {{\rm{sin}}{\theta _2}{\rm{cos}}{\theta _2}}&{{\rm{si}}{{\rm{n}}^2}{\theta _2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&0\\ 0&{\exp (i{\phi _y})} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{E_x}}\\ {{E_y}} \end{array}} \right] = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{cos}}{\theta _1}{\rm{cos}}{\theta _2}[{E_x}\cos {\theta _1} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {E_y}{\rm{sin}}{\theta _1}]{\rm{exp}}({\rm{i}}{\phi _y})\left[ {\begin{array}{*{20}{c}} {{\rm{cos}}{\theta _2}}\\ {{\rm{sin}}{\theta _2}} \end{array}} \right]} \end{array} $
(4) E1, E2两束光满足相干条件,发生干涉,在CCD上两束光叠加后的强度为:
$ \begin{array}{*{20}{c}} {I = \langle {\mathit{\boldsymbol{E}}^\dagger }\mathit{\boldsymbol{E}}\rangle = \langle {{({\mathit{\boldsymbol{E}}_1} + {\mathit{\boldsymbol{E}}_2})}^*}({\mathit{\boldsymbol{E}}_1} + {\mathit{\boldsymbol{E}}_2})\rangle = }\\ {[{\rm{co}}{{\rm{s}}^2}{\theta _1}{\rm{co}}{{\rm{s}}^2}{\theta _2} + {\rm{si}}{{\rm{n}}^2}{\theta _1}{\rm{si}}{{\rm{n}}^2}{\theta _2}] \times }\\ {[{I_x}{\rm{co}}{{\rm{s}}^2}{\theta _1} + {I_y}{\rm{si}}{{\rm{n}}^2}{\theta _2}] + 2{\rm{cos}}{\theta _1}{\rm{cos}}{\theta _2} \times }\\ {\quad {\rm{sin}}{\theta _1}{\rm{sin}}{\theta _2}[{I_x}{\rm{co}}{{\rm{s}}^2}{\theta _1} + {I_y}{\rm{co}}{{\rm{s}}^2}{\theta _2}]{\rm{cos}}\phi } \end{array} $
(5) 式中,Ix=〈Ex*Ex〉,Iy=〈Ey*Ey〉,ϕ=ϕx-ϕy是两束光的相位差,上标†表示厄米共轭,上标*表示复共轭。
对于θ1和θ2的取值,由(5)式可知,当θ1和θ2取0°或90°时,CCD上光强分布一致,干涉条纹可见度为0,观测不到干涉条纹,只有当θ1, θ2∈(-π/2, 0)∪(0, π/2)时,CCD上的光强分布不再一致,会呈现出明暗条纹分布,干涉条纹的可见度不再为0,当θ1=θ2=π/4时,明暗条纹之间的光强差别达到最大,对应的干涉条纹可见度也达到最大,在CCD上观察到最清晰的干涉条纹。
基于SPBS和基于Savart偏光棱镜的偏光干涉系统结构相比较,由于Savart偏光棱镜由前后两部分组成,理想情况下,两部分的光轴应该严格呈90°,但在实际加工过程中,不可能做到严格的90°,会存在一定的角度误差[17],假设棱镜后半部分的光轴和前半部分的不垂直,偏离角度为α,如图 2所示。
Figure 2. Diagram of optical axes deviation from vertical direction between the Savart prism front and back parts
$ {A_{\rm{o}}} = {A_{\rm{e}}} = {A_1} $
(6) 经过第二部分后,Ao和Ae分别向光轴2和垂直于光轴2的方向投影,得到经过第二部分后沿光轴2的光矢量Ae, 2的大小为:
$ \begin{array}{*{20}{c}} {{A_{{\rm{e}}, 2}} = {A_{{\rm{o, e}}}} - {A_{{\rm{e, e}}}} = {A_{\rm{o}}}{\rm{cos}}\alpha - }\\ {{A_{\rm{e}}}{\rm{sin}}\alpha = {A_1}({\rm{cos}}\alpha - {\rm{sin}}\alpha )} \end{array} $
(7) 同样,经过第二部分后沿光轴2的光矢量Ao, 2的大小为:
$ \begin{array}{*{20}{c}} {{A_{{\rm{o, 2}}}} = {A_{{\rm{o, o}}}} + {A_{{\rm{e, o}}}} = {A_{\rm{o}}}{\rm{sin}}\alpha + }\\ {{A_{\rm{e}}}{\rm{cos}}\alpha = {A_1}({\rm{sin}}\alpha + {\rm{cos}}\alpha )} \end{array} $
(8) Ae, 2和Ao, 2在45°方向在进行投影,由于二者不相等,所以干涉后的光强的极大值Ii, max和极小值Ii, min分别表示为:
$ \begin{array}{*{20}{c}} {{I_{{\rm{i, max}}}} = A_1^2[{{({\rm{cos}}\alpha + {\rm{sin}}\alpha )}^2} + {{({\rm{cos}}\alpha - {\rm{sin}}\alpha )}^2}] + }\\ {2A_1^2({\rm{cos}}\alpha + {\rm{sin}}\alpha )({\rm{cos}}\alpha - {\rm{sin}}\alpha ) = }\\ {2A_1^2[{\rm{co}}{{\rm{s}}^2}\alpha + {\rm{si}}{{\rm{n}}^2}\alpha + {\rm{co}}{{\rm{s}}^2}\alpha - }\\ {{\rm{si}}{{\rm{n}}^2}\alpha ] = 4A_1^2{\rm{co}}{{\rm{s}}^2}\alpha } \end{array} $
(9) $ \begin{array}{*{20}{c}} {{I_{{\rm{i, min}}}} = A_1^2[{{({\rm{cos}}\alpha + {\rm{sin}}\alpha )}^2} + {{({\rm{cos}}\alpha - {\rm{sin}}\alpha )}^2}] - }\\ {2A_1^2({\rm{cos}}\alpha + {\rm{sin}}\alpha )({\rm{cos}}\alpha - {\rm{sin}}\alpha ) = }\\ {2A_1^2[{\rm{co}}{{\rm{s}}^2}\alpha + {\rm{si}}{{\rm{n}}^2}\alpha - {\rm{co}}{{\rm{s}}^2}\alpha + }\\ {{\rm{si}}{{\rm{n}}^2}\alpha ] = 4A_1^2{\rm{si}}{{\rm{n}}^2}\alpha } \end{array} $
(10) 所以干涉条纹可见度:
$ V = \frac{{{I_{{\rm{i, max}}}} - {I_{{\rm{i, min}}}}}}{{{I_{{\rm{i, max}}}} + {I_{{\rm{i, min}}}}}} = \frac{{{\rm{co}}{{\rm{s}}^2}\alpha - {\rm{si}}{{\rm{n}}^2}\alpha }}{{{\rm{co}}{{\rm{s}}^2}\alpha + {\rm{si}}{{\rm{n}}^2}\alpha }} = {\rm{cos}}(2\alpha ) $
(11) 可以看到,光轴偏离角α越大,可见度越低,并且α越大,可见度的下降速度越快。当光轴偏离角为1°时,对应的可见度会下降0.02%,而当光轴偏离角为5°时,对应的可见度就会下降0.38%。
以上仅仅分析了Savart偏光棱镜前后两部分光轴在同一平面内但不垂直的情况,二者如果不在同一平面内,情况会更加复杂,并且棱镜的两部分相胶合时,胶合面的面型偏差也会增大系统误差,胶合层的应力不均匀产生的折射率分布不均匀也会影响干涉成像效果,另外,前后两个部分加工和安装误差也会引起光路失配,导致色散现象,特别对于复色光,将产生较大的影响,以上因素在SPBS中均不存在,所以基于SPBS的偏光干涉系统的系统误差要小于基于Savart偏光棱镜的系统。
-
采用负单轴冰洲石晶体制作SPBS,冰洲石材料具有较大的双折射率,并且透过率高,具有稳定的物理、化学性质,是制作高性能偏光器件的首选材料[18-20]。假设SPBS主截面在x-O-z平面内,光轴方向与z轴正方向成ψ角,如图 3所示,自然光正入射SPBS后分成o光和e光,经过SPBS后,两束光传播方向平行,光束中心拉开一定的横向距离,形成剪切差d。
t为SPBS的长度,i为入射角,光进入晶体后o光和e光的折射角分别是φ, φ′,满足:
$ {{\rm{sin}}i = {n_{\rm{o}}}{\rm{sin}}\varphi } $
(12) $ {{\rm{sin}}i = {n^\prime }_{\rm{e}}{\rm{sin}}{\varphi ^\prime }} $
(13) 式中,no为o光的主折射率,ne′为e光的折射率。ne′由Snell定律给出:
$ \frac{1}{{{n_{\rm{e}}}^{\prime 2}}} = \frac{{{\rm{si}}{{\rm{n}}^2}\theta }}{{{n_{\rm{e}}}^2}} + \frac{{{\rm{co}}{{\rm{s}}^2}\theta }}{{{n_{\rm{o}}}^2}} $
(14) 式中,θ为光波法线方向与晶体光轴之间的夹角。
所以由SPBS产生的e光、o光之间的光程差Δ可以表示为:
$ \begin{array}{*{20}{c}} {\Delta = OA \cdot {n_{\rm{e}}}^\prime - (OB \cdot {n_{\rm{o}}} + BC) = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{t}{{{\rm{cos}}{\varphi ^\prime }}} \cdot \frac{{{\rm{sin}}i}}{{{\rm{sin}}{\varphi ^\prime }}} - \frac{t}{{{\rm{cos}}\varphi }} \cdot \frac{{{\rm{sin}}i}}{{{\rm{sin}}\varphi }} - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t{\rm{sin}}i({\rm{tan}}{\varphi ^\prime } - {\rm{tan}}\varphi ) = t{\rm{sin}}i({\rm{cot}}{\varphi ^\prime } - {\rm{cot}}\varphi )} \end{array} $
(15) 式中,OA为e光在SPBS中经过的距离,OB为o光在SPBS中经过的距离,BC为经过SPBS后o光和e光由于出射位置不同带来的光程差。
考虑更一般的光入射情况,如图 4所示。设ABMO为包含光轴Oη的主截面,OCDM为包含e光(ON)的入射面,设入射面与主截面之间的夹角为ω,ψ为光轴与晶体入射端面的法线OM夹角,设$ \mathit{\pmb{{\hat{i}}}}, \mathit{\pmb{{\hat{j}}}}, \mathit{\pmb{{\hat{u}}}}, \mathit{\pmb{{\hat{v}}}}, \mathit{\pmb{{\hat{k}}}} $, 为单位矢量,满足$ \mathit{\pmb{{\hat{i}}}}\bot \mathit{\pmb{{\hat{k}}}} $,$ \mathit{\pmb{{\hat{j}}}}\bot \mathit{\pmb{{\hat{k}}}}$,两个面ABMO和OCDM的夹角(即$ \mathit{\pmb{{\hat{i}}}}$和$ \mathit{\pmb{{\hat{j}}}} $正向夹角)为ω,则:
Figure 4. Schematic diagram when there is an angle ω between the main section and the incident plane
$ \begin{array}{*{20}{c}} {{\rm{cos}}\theta = \mathit{\boldsymbol{\hat u}} \cdot \mathit{\boldsymbol{\hat v}} = (\mathit{\boldsymbol{\hat i}}{\rm{sin}}{\varphi ^\prime } + \mathit{\boldsymbol{\hat k}}{\rm{cos}}{\varphi ^\prime }) \cdot }\\ {(\mathit{\boldsymbol{\hat j}}{\rm{sin}}\psi + \hat k{\rm{cos}}\psi ) = {\rm{cos}}\omega {\rm{sin}}{\varphi ^\prime }{\rm{sin}}{\varphi ^\prime } + {\rm{cos}}{\varphi ^\prime }{\rm{cos}}\psi } \end{array} $
(16) 由(13)式~(16)式可得:
$ \begin{array}{*{20}{c}} {\Delta = {\Delta _{{\rm{SPBS}}}} = t[{\rm{sin}}i{\rm{cot}}{\varphi ^\prime } - {\rm{sin}}i{\rm{cot}}\varphi ] = }\\ {t\left\{ {\frac{1}{{{C_0}}} - \frac{1}{b} + \frac{{({a^2} - {b^2}){\rm{sin}}\psi {\rm{cos}}\psi {\rm{cos}}\omega }}{{C_0^2}}{\rm{sin}}i + } \right.}\\ {\frac{{{\rm{si}}{{\rm{n}}^2}i}}{2}\left[ {\left( {b - \frac{{{a^2}}}{{{C_0}}}} \right){\rm{si}}{{\rm{n}}^2}\omega + \left( {b - \frac{{{a^2}{b^2}}}{{C_0^3}}} \right){\rm{co}}{{\rm{s}}^3}\omega } \right] + }\\ {\left. { {\rm{term}}{\kern 1pt} {\kern 1pt} {\rm{in}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{si}}{{\rm{n}}^4}i, etc } \right\}} \end{array} $
(17) 式中,a2=1/ne2,b2=1/no2,C02=a2sin2ψ+b2cos2ψ,上式中含有常数项,导致了只有在单色光情况下干涉条纹方能被观察到,通常情况下,复色光作为光源产生的干涉条纹看不见。
一般入射角i比较小,略去sini的高次项,得到:
$ \Delta = t\left[ {\frac{{{a^2} - {b^2}}}{{{a^2} + {b^2}}}({\rm{cos}}\omega + {\rm{sin}}\omega ){\rm{sin}}i} \right] $
(18) 式中,sini的系数即为厚度为t的SPBS的横向剪切量d,即:
$ d = t\left[ {\frac{{{a^2} - {b^2}}}{{{a^2}{\rm{si}}{{\rm{n}}^2}\psi + {b^2}{\rm{co}}{{\rm{s}}^2}\psi }}{\rm{sin}}\psi {\rm{cos}}\psi {\rm{cos}}\omega } \right] $
(19) 图 3中e光和o光的剪切量在x-O-z平面内,考虑到最大剪切差及加工难易程度,通常情况下取ψ=45°,并且使入射面与主截面重合(ω=0°),此时的剪切量d为:
$ d = \frac{{({a^2} - {b^2})t}}{{{a^2} + {b^2}}} $
(20) SPBS长度t=25mm,光程差ΔSPBS随入射角i和入射面与主截面夹角ω的变化如图 5所示。由图中看出,在正入射时,o光和e光的光程差不是最大的,且相位差变化并不关于0°入射对称,提示在调整光路时需注意。图 6a所示为ω=0°、入射角在±6°范围内变化时相位差的变化情况; 图 6b所示为ω=90°、入射角在±6°范围内相位差的变化情况。在SPBS通光孔径足够大的情况下,为增大相位差,可适当调整入射角的大小以满足需求。
Figure 6. a—curve of optical path difference changing with incidence angle when ω=0° b—curve of optical path difference changing with incidence angle when ω=90°
采用单平行分束器,不同于以往Savart板作为分光器件,其优点归纳起来有3个方面:(1)易于加工,在方解石原石上加工成品难度下降,而Savart板由两块单板粘合而成,单板加工精度要一致,并且粘合时光轴对准精度要求高; (2)误差减小,单平行分束器只需光轴与晶体通光面方向严格45°,而Savart板需要两块单板光轴方向同时满足要求,另外粘合时胶水也会增加不确定因素,因而误差会大大增加; (3)有效防止色散影响,两个半块加工误差会导致光路不匹配,引起色散,而单块晶体不存在这一问题。
基于单平行分束器的偏光干涉系统
Polarization interference system based on single polarization parallel beam splitter
-
摘要: 为了克服常规偏光干涉系统中核心器件萨瓦板(Savart)偏光镜制作工艺复杂、装调难度高的缺点,解决由于Savart偏光镜装调、加工误差造成的偏光干涉系统条纹混叠和调制度下降的问题,采用了一种基于单平行分束器(SPBS)的偏光干涉系统的方法,分析了系统的结构原理,采用矩阵传递函数推导了经偏光干涉系统出射光的琼斯矩阵及相干叠加强度,得出了和基于Savart偏光镜的干涉系统类似的干涉结果,分析了系统光程差与入射角及入射面的变化关系,并通过实验验证了理论分析的正确性。结果表明,由于SPBS结构简单,不需要多个单元组合,所以不存在装调误差,并且大幅度降低了加工误差。Abstract: In order to overcome the detects of Savart polarizer, which is the core device of polarizing interference system, such as complex fabrication process and high difficulty in assembling and adjusting, and to solve problems of interference fringe overlying and modulation decline caused by the assembling and processing errors of Savart polarizer, a method of a polarizing interference system based on a single parallel beam splitter (SPBS) was adopted. The structure and principle of this system were analyzed. Jones matrix and coherence intensity of the light exited from the polarizing interferometer system were derived by matrix transfer function. The interference effect is similar to that of the interferometer system based on Savart polarizer. The relationships between the optical path difference of the system and the incident angle and the incident surface were also analyzed. The correctness of the theoretical analysis was verified by experiments. The results show that because SPBS is simple in structure and not required Multiple unit combinations, there is no assembly error, and the processing error will be greatly reduced.
-
Key words:
- physical optics /
- polarizer /
- polarization interference /
- single parallel beam splitter
-
-
[1] YANG J Sh, HAN P G, YAN J F, et al. Analysis of beam-splitting characteristics of Wollaston-type polarizing prisms[J]. Laser Techno-logy, 2018, 42(2):249-253(in Chinese). [2] YANG H L, SONG L K, WANG R X, et al. Design of the α-BBO crystal Wollaston prism-based on the imaging spectrometer[J]. Laser Technology, 2014, 38(1):79-82(in Chinese). [3] KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al. White light Sagnac interferometer for snapshot linear polarimetric imaging[J]. Optics Express, 2009, 17(25): 22520-22534. doi: 10.1364/OE.17.022520 [4] YUAN X P, ZHANG D W, WANG Ch, et al. Research progress in human tissue detection technologies based on reflection hyperspectra[J]. Optical Instruments, 2017, 39(1): 73-80(in Chinese). [5] MURAKAMI N, BABA N. Common-path lateral-shearing nulling interferometry with a Savart plate for exoplanet detection[J]. Optics Letters, 2010, 35(18):3003-3005. doi: 10.1364/OL.35.003003 [6] ABDELSALAM I G D. Rough surface characterization suing off-axis digital holographic microscopy compensated with self-hologram rotation[J]. Current Applied Physics, 2018, 18(11): 1261-1267. doi: 10.1016/j.cap.2018.07.003 [7] CAO Q, ZHANG J, DEHOOG E, et al. Demonstration of snapshot imaging polarimeter using modified Savart polariscopes[J]. Applied Optics, 2016, 55(5): 954-959. doi: 10.1364/AO.55.000954 [8] LIU X J, LIU L Y, LI X Zh, et al. Comparision on classification results based on date of TG-1and HJ-1CCD[J]. Remote Sensing Infor-mation, 2013, 28(3):74-79(in Chinese). [9] ZHANG J, YUAN C A, HUANG G H, et al. Acquisition of a full-resolution image and aliasing reduction for a spatially modulated imaging polarimeter with two snapshots[J]. Applied Optics, 2018, 57(10):2376-2382. doi: 10.1364/AO.57.002376 [10] WATANABE A, FURUKAWA H. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation[J]. Optics Communications, 2018, 413:8-13. doi: 10.1016/j.optcom.2017.12.024 [11] ROLAND A T, JUAN P T, VALERIO P. Technique for generating periodic structrued light beams using birefringent elemnts[J]. Optics Express, 2018, 26(22): 28938-28947. doi: 10.1364/OE.26.028938 [12] BU M M, NIU M Sh, WANG T, et al. Dual four-channel simultaneous interference imaging spectrometer[J]. Acta Optica Sinica, 2017, 37(8): 811001(in Chinese). doi: 10.3788/AOS201737.0811001 [13] WANG T, NIU M Sh, BU M M, et al. Polarization-difference imaging system with adjustable optical path and its characteristics[J]. Acta Optica Sinica, 2017, 37(7): 711001(in Chinese). doi: 10.3788/AOS201737.0711001 [14] MU T, ZHANG C, ZHAO B. Principle and analysis of a polarization imaging spectrometer[J]. Applied Optics, 2009, 48(12):2333-2339. doi: 10.1364/AO.48.002333 [15] BORE M, WOLF E. Principles of optics[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2009:23(in Chinese). [16] YAN J X, WEI G H, HA L Zh, et al. Matrix optics[M]. Beijing: Weapon Industry Press, 1995:144-186(in Chinese). [17] HOU T, CAO F L, ZHANG R Zh. Effect of polarization error on combining efficiency of coherent polarization beam[J]. Laser Technology, 2018, 42(4):572-576(in Chinese). [18] FU Y D, WU F Q, NING G Y. Characteristics of splitting angles of micro-angle beam splitting polarization prisms[J]. Laser Technology, 2017, 41(3): 402-405 (in Chinese). [19] SUN D, WU F Q, YUE Z Y, et al. Design and performance analysis of double semarmont prism[J]. Opitics & Optoelectronic Technology, 2015, 13(6): 100-104(in Chinese). [20] WU F Q, WU W D, SU F F, et al. Study on colour fading and optical properties of iceland crystal[J]. Acta Optica Sinica, 2015, 35(9): 916004(in Chinese). doi: 10.3788/AOS201535.0916004 [21] MU T, ZHANG C, REN W, et al. Interferometric verification for the polarization imaging spectrometer[J]. Journal of Modern Optics, 2011, 58(2):154-159. doi: 10.1080/09500340.2010.547621