-
光脉冲在光纤中传输时满足非线性薛定谔方程[2],使用分步傅里叶变换的方法推导下列方程:
$ {\rm{i}}\frac{{\partial A}}{{\partial Z}} = - \frac{{\rm{i}}}{2}\alpha A + \frac{1}{2}{\beta _2}\frac{{{\partial ^2}A}}{{\partial {T^2}}} - \gamma |A{|^2}A $
(1) 式中, A为脉冲包络的慢变振幅; T为随脉冲以群速度移动的时间; Z为传输距离; β2为光纤2阶色散系数; α为损耗系数; γ为非线性系数。通过(1)式对光纤传输进行了分析研究。利用分步傅里叶变换的方法研究了超高斯脉冲在色散渐减光纤中传输特性。
$ \frac{{\partial A}}{{\partial Z}} = (D + N)A $
(2) 式中, D为差分算子,表示线性介质的色散和吸收; N是非线性算子,决定脉冲在传输过程中光纤非线性效应的影响。(2)式是对(1)式进行了改写, 是为了进一步进行傅里叶变换。
$ {D = \frac{{\rm{i}}}{2}{\beta _2}\frac{{{\partial ^2}A}}{{\partial {T^2}}}} $
(3) $ {N = {\rm{i}}\gamma |A{|^2}} $
(4) 在DDF中,β2是沿着传输方向减小的量。
$ {\beta _2} = {\beta _2}(0)P(Z) $
(5) 式中, P(Z)为色散函数,决定色散系数的变化。本文中所采用的是超高斯型色散函数,为了研究超高斯脉冲的传输特性,对超高斯脉冲进行了分析,超高斯脉冲的推广为下面的形式[11]:
$ A(0, T) = {\rm{exp}}\left[ {\frac{{1 + {\rm{i}}C}}{2}{{\left( {\frac{T}{{{T_0}}}} \right)}^{2m}}} \right] $
(6) 式中, C为啁啾参量, T0为输入脉冲, m为脉冲的陡峭程度。超高斯脉冲是具有陡峭前后沿的高斯脉冲,而陡峭程度是由m决定的。将(6)式进行傅里叶变化:
$ A(0, \omega ) = {\left( {\frac{{2\pi {T_0}^{2m}}}{{1 + {\rm{i}}C}}} \right)^{\frac{1}{{2m}}}}{\rm{exp}}\left[ { - \frac{{{\omega ^2}{T_0}^{2m}}}{{2(1 + {\rm{i}}C)}}} \right] $
(7) 式中, ω为角速度。在DDF中,当色散随超高斯形式变化时,色散函数[12-13]为:
$ P(Z) = {\rm{exp}}[ - ({Z^{2m}}/{L^{2m}}){\rm{ln}}k] $
(8) 式中,L为光纤长度,k为光纤起始端与末端的2阶色散系数的比值。色散函数可以决定色散渐减光纤的色散变化趋势,为了探究超高斯型DDF的色散特性,对m为2, 3, 4时的色散函数进行仿真,图 1展示的是超高斯型DDF在m为2, 3, 4时色散函数的传输特性。
如图 1所示,具有不同陡峭程度的色散函数具有不同的传输特性。m的值决定传输曲线的变化趋势。m的值越大,曲线开始变化的越缓慢。随着传输距离的增加,函数的色散因子会趋于0。
超高斯脉冲的陡峭程度m越大,脉冲的波形展宽就越大,信号畸变就越大。所以本文中将使用m=2时的超高斯脉冲作为理想输入脉冲。
超高斯型色散渐减光纤中脉冲的传输特性分析
Analysis of transmission characteristics of pulses in super-Gaussian dispersion-decreasing fibers
-
摘要: 为了研究超高斯脉冲在具有不同陡峭程度的超高斯型色散渐减光纤中的传输特性,采用了非线性薛定谔方程和分步傅里叶变换的方法,数值模拟了超高斯脉冲在超高斯型色散渐减光纤中的演化规律。在反常色散区考虑色散和非线性效应的情况下,对超高斯脉冲的阐述特性进行了时域和频域上的理论分析与实验验证。结果表明,陡峭程度m=4时, 超高斯型色散渐减光纤的传输特性最好。此研究对超高斯型色散渐减光纤中脉冲的传输特性分析是有帮助的。Abstract: In order to study the propagation characteristics of super-Gaussian pulse in super-Gaussian dispersion decreasing fiber with different steepness, the nonlinear evolution of Gaussian pulse in the super-Gaussian dispersion-decreasing fiber was numerically simulated by using the nonlinear Schrödinger equation and the stepwise Fourier transform method. The theoretical analysis and experimental verification of the super-Gaussian pulse in the time domain and frequency domain were carried out with consideration of dispersion and nonlinear effect in the abnormal dispersion zone. The results show that, when the steepness m=4, the super-Gaussian dispersion-decreasing fiber has the best transmission characteristics, so it is concluded that the higher the steepness m is, the better the transmission characteristics of pulse will be.
-
-
[1] ZHANG Q F, GAO J. Generation of excellent self-similar pulses in a dispersion-decreasing fiber[J]. Optik, 2011, 122(19): 1753-1756. doi: 10.1016/j.ijleo.2010.10.037 [2] AGRAWAL G. Nonlinear fiber optics[M]. 4th ed. New York: Elsevier, 2013: 47-56. [3] ALI R, HAMZA M Y. Propagation behavior of super-Gaussian pulse in dispersive and nonlinear regimes of optical communication systems[C]// 2016 International Conference on Emerging Technologies (ICET) 2017. New York, USA: IEEE, 2016: 1109-1121. [4] SUNAK H R D. Optical fiber communications[J]. Proceedings of the IEEE, 2008, 1985: 13332. [5] HIROOKA T, NAKAZAWA M. Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion[J].Optics Letters, 2004, 29(5): 498-500. doi: 10.1364/OL.29.000498 [6] XU Y H, YE H, LING D, et al. Effect of initial chirp on supercontinuum generation in dispersion decreasing fibers[J]. Optik, 2016, 127(3): 1111-1115. doi: 10.1016/j.ijleo.2015.10.205 [7] ZHONG X, LIU D, SHENG J. Long-term nonlinear propagation and damped oscillation behaviors of Gaussian and super-Gaussian pulses in optical fibers[J]. Optik, 2016, 127(16): 6395-6399. doi: 10.1016/j.ijleo.2016.04.118 [8] ZHANG Q F, DENG Y H. Influence of gain coefficient on the self-similar pulses propagation in a dispersion-decreasing fiber[J]. Optik, 2016, 127(12): 5110-5112. doi: 10.1016/j.ijleo.2016.02.060 [9] ZHONG D Zh, DENG T, ZOU F Y. Research on super-Gaussian pulse transmission characteristics in single-mode fiber [J]. Optical Communication Research, 2007, 33(2):22-25. [10] WANG Y, LI Y Q. Study on the characteristics of super-Gaussian pulse without initial chirp in single-mode fiber [J]. Optical Communication Research, 2015, 41(1):17-19. [11] LIU J H, LI H Q. Study on the broadening of chirped Gaussian pulse in DDF [J]. Optical Communication Research, 2008, 34(2):41-43. [12] LIU J H, LI H Q, et al. Study on pulse broadening in dispersion decreasing fiber [J]. Optical Communication Research, 2007(s1):341-342. [13] ZHANG J G, LI Y F, ZHAO J Q. Analysis of ultra-short optical pulse transmission characteristics based on short-time Fourier transform [J]. Laser Technology, 2013, 37(1):52-55(in Chinese).