-
搭建了如图 1所示的玻璃与玻璃激光焊接实验平台。由激光系统、3维平台、数控(computer numerical control,CNC)系统、同轴观测系统、专用夹具平台组成。激光系统采用的是由武汉锐科光纤激光技术股份有限公司提供的RFL-A100D集成一体化光纤耦合半导体激光器,光束辐射波长为915nm,激光器最大输出功率为100W, 聚焦镜焦距为300mm, 焦点处光斑直径为600μm。在工作范围内精确、快速地控制激光光斑位置是激光焊接技术的基本要求,激光光斑位置通过数控系统控制安装在3维运动平台上的焊接头来实现。3维运动平台上与激光同轴的观测系统可辅助控制系统将激光光斑确定在玻璃料的中心线附近,此外,观测系统可拍摄视频便于分析焊接过程,以此改善焊接工艺。待焊接的玻璃基板通过设计的专用夹具进行稳定、可靠的固定。本文中所探究的不同激光参量(激光功率、焊接速率)均可由数控系统直接调节。
为了达到较低的焊接温度,实验中使用的是可吸收激光的低温玻璃料,玻璃料软化点在428℃左右,热膨胀系数约为4.8×10-6/K,玻璃粉的平均直径为1.42μm。可通过丝网印刷沉积。本实验中所用粉末均为同一批次,避免不同批次粉末成分含量不一致对实验的影响。如图 2所示,实验用基板和盖板采用美国康宁公司的EAGLE XG玻璃板,这是一款热稳定性、光学穿透率、面型精度和化学稳定性极佳的高品质无碱玻璃基板。本实验中采用的玻璃板试样尺寸为40mm×40mm×1.1mm。EAGLE XG的具体技术参量见表 1,表中RMS为均方根(root mean square)。
Table 1. Main technical parameters of glass panel
thickness density refractive
indextransmittance surface
roughness1.1mm 2.38g/cm3 1.5198 91.7% < 1nm RMS -
玻璃对激光波长透明,无法直接用半导体激光实现两块玻璃板的可靠连接,通过在两块玻璃板中间加入对激光波长不透明的玻璃料来间接实现玻璃焊接的目的。玻璃料吸收激光能量温度升高而熔化,熔融的玻璃料在玻璃板表面扩散。通过热传导玻璃料将吸收的能量传递到上下玻璃板,随着热量的持续输入,液态的玻璃料向上下玻璃板的内部扩散,玻璃板部分熔融的玻璃也会向玻璃料内部扩散,上下玻璃板与玻璃料在接触界面相互扩散,直至激光能量不再输入,玻璃料与玻璃冷却凝固实现玻璃与玻璃的连接。玻璃激光焊接示意图如图 3所示。在进行激光焊接工艺之前,需要在下玻璃板上丝网印刷玻璃料以及在加热炉中对玻璃料进行预烧结。
丝网印刷是将配制好的玻璃料通过平面丝印机均匀地印刷到下玻璃板上。玻璃料的印刷线宽0.78mm,玻璃料的印刷高度约为10μm。通过调节刮板压力、定时清洁网板等保证玻璃料丝印后形状完整、无灰尘、表面平整。丝印在玻璃板上的玻璃料如图 4所示。预烧结的目的是将丝网印刷之后的玻璃料熔融固化在玻璃上基板上。将丝印完玻璃料后的玻璃板放置于陶瓷纤维马弗炉中分段加热烧结,并通过精确控制升温速率获得最佳的预烧结效果。预烧结温度曲线如图 5所示。第一阶段,将玻璃料从室温开始加热到150℃并保温20min,去除玻璃料中的水气;第二阶段,加热到300℃保温30min, 蒸发或燃烧掉玻璃料中的有机粘结剂;第三阶段,玻璃料被加热至450℃保温30min, 再继续加热到最高温度500℃并保温120min,玻璃料在玻璃基板上熔融、固化,然后将玻璃板在炉内冷却至室温,避免玻璃板快速地后出现应力集中导致在焊接后出现裂纹现象。经过丝网印刷和预烧结工艺后,得到平整的玻璃料层,然后在搭建的激光焊接系统上完成激光焊接工艺过程。在激光焊接过程中,将预烧结好的基板与玻璃盖板对齐,用专用夹具夹好并施加压力,施加的压力有助于玻璃板表面的润湿以及玻璃料与两块玻璃板的结合。使用3维平台控制激光头,使激光束沿着丝印的玻璃料形成的轨迹扫描进行焊接,玻璃料充分熔融,冷却后形成高强度的连接。在实验中,根据激光焊接工艺实验结果分析,优化激光焊接工艺参量,如激光功率、扫描速率等来降低气孔率、提高焊缝质量,采用的工艺参量如表 2所示。
Table 2. Laser process parameters
laser power
P/Wwelding speed
v/(m·min-1)defocused amount
d/mm30 0.1 -15 35 0.1 -15 40 0.1 -15 45 0.1 -15 35 0.05 -15 35 0.15 -15 35 0.2 -15
玻璃激光焊接气孔控制研究
Study on the porosity control during laser welding of glass
-
摘要: 为了获得成形良好、气孔少的玻璃焊接焊缝, 采用在中间层添加对激光波长不透明玻璃料的方法, 对玻璃与玻璃激光焊接中出现的气孔问题进行了研究。以半导体激光作为热源, 搭建了用于玻璃与玻璃激光焊接的成套焊接设备, 对玻璃与玻璃激光焊接工艺进行了实验研究。通过分析气孔分布特征, 统计焊缝气孔率, 测量气孔尺寸, 对比焊缝正、反面形貌差异, 研究了激光平均功率、焊接速率等工艺参量对焊缝气孔产生的规律及表面形貌的影响。结果表明, 当激光功率过小、焊接速率过慢时, 不利于抑制焊缝中气孔的产生, 并且出现未焊上的情况; 随着激光功率、焊接速率的增加, 焊缝当中的气孔率显著上升; 在激光功率P=35W、焊接速率v=0.1m/min、离焦量d=-15mm时, 可获得成形良好、气孔直径在3.696μm以下且分布均匀的焊缝, 连接强度高。此研究可为玻璃的激光封接制造提供理论依据, 具有广泛的工业应用前景。Abstract: In order to obtain the glass welding seam with good shape and few pores, the method of adding opaque glass frit to the middle layer was used to study the porosity problem in the laser welding of glass. A complete set of welding equipment for laser welding of glass and glass was built with semiconductor laser as the heat source. By analyzing the characteristics of porosity distribution, counting the porosity of weld, measuring the size of porosity, comparing the difference between the front and backside of the weld, the influence of laser average power, welding speed and other process parameters on the formation of porosity and the surface morphology of weld was studied. The results show that when the laser power is too small and the welding speed is too slow, it is not conducive to inhibit the generation of pores in the weld, and the glass plate may not be welded. With the increase of laser power and welding speed, the porosity in the weld increases significantly. When the laser power P, the welding rate v, and the defocusing amount d is respectively set to beequals 35W, 0.1m/min, and -15mm, a well-formed weld with a pore diameter of less than 3.696μm and a uniform distribution can be obtained, and the connection strength is high. This research can provide a theoretical basis for laser sealing of glass, and has a wide industrial application prospect.
-
Key words:
- laser technique /
- pore /
- welding /
- glass /
- glass frit
-
Table 1. Main technical parameters of glass panel
thickness density refractive
indextransmittance surface
roughness1.1mm 2.38g/cm3 1.5198 91.7% < 1nm RMS Table 2. Laser process parameters
laser power
P/Wwelding speed
v/(m·min-1)defocused amount
d/mm30 0.1 -15 35 0.1 -15 40 0.1 -15 45 0.1 -15 35 0.05 -15 35 0.15 -15 35 0.2 -15 -
[1] LEI Zh L, LI Y, CHEN Y B, et al. Effect of process parameters on porosity formation ratio in dual-beam laser welding of aluminum alloys with filler wire[J]. Transactions of the China Welding Institution, 2013, 34(2): 40-44(in Chinese). [2] SU Sh X, YU Y L, FEI W, et al. Research of characteristics of weld formation of aluminum alloy by high power fiber laser welding[J]. Laser Technology, 2017, 41(3): 322-327(in Chinese). [3] WANG X H, GU X Y, SUN D Q. Research on interface characteristic of laser welding joints of steel/aluminum dissimilar materials[J]. Journal of Mechanical Engineering, 2017, 53(4): 26-33(in Chin-ese). doi: 10.3901/JME.2017.04.026 [4] LUO C, LIN L. The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask[J]. Sensors & Actuators, 2002, A97/98: 398-404. [5] MESCHEDER U M, ALAVI M, HILTMANN K, et al. Local laser bonding for low temperature budget[J]. Sensors & Actuators, 2002, A97/98: 422-427. [6] TAN A, TAY F. Localized laser assisted eutectic bonding of quartz and silicon by Nd: YAG pulsed-laser[J]. Sensors & Actuators, 2005, A120(2): 550-561. [7] THEPPAKUTTAI S, SHAO DB, CHEN S. Experimental investigation and numerical simulation of glass-silicon bonding by localized laser heating[C]//ASME 2003 International Mechanical Engineering Con-gress and Exposition. London, UK: Professional Engineering Publishing Ltd., 2003: 107-112 [8] TSENG A A, PARK J S. Mechanical strength and interface characte-ristics of transmission laser bonding[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2006, 29(3): 191-201. doi: 10.1109/TEPM.2006.881768 [9] WILD M J, GILLNER A, POPRAWE R. Locally selective bonding of silicon and glass with laser[J]. Sensors & Actuators, 2001, A93(1): 63-69. [10] WITTE R, HERFURTH H, HEINEMANN S. Laser joining of glass with silicon[J]. Proceedings of the SPIE, 2002, 4637: 487-495. doi: 10.1117/12.470657 [11] SUN L, MALSHE A P, CUNNINGHAM S, et al. Localized CO2 laser bonding process for MEMS packaging[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(s1): 577-581. [12] ZHANG C, LIU Sh Y, ZHANG F L, et al. Effect of defocus on droplet transfer characteristics of high strength steel by laser welding with fill wire[J]. Laser Technology, 2019, 43(3): 380-386(in Chin-ese). [13] TIAN R, CAO F, LI Y, et al. Application of laser-assisted glass frit bonding encapsulation in all inorganic quantum dot light emitting devices[J]. Molecular Crystals, 2018, 676(1): 59-64. doi: 10.1080/15421406.2019.1595698 [14] TAO Y, MALSHE A P, BROWN D. Selective bonding and encapsulation for wafer-level vacuum packaging of MEMS and related micro systems[J]. Microelectronics & Reliability, 2004, 44(2): 251-258. [15] RIBEIRO F, MAcAIRA J, CRUZ R, et al. Laser assisted glass frit sealing of dye-sensitized solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 96: 43-49. [16] HONMA T, KAMATA H, TATAMI J, et al. Influence of crystallization inside glass frit on seal stress in ceramic metal halide lamps[J]. Ceramics International, 2013, 39(3): 2767-2774. doi: 10.1016/j.ceramint.2012.09.043 [17] CRUZ R, RANITA J, MAcAIRA J, et al. Glass-glass laser-assisted glass frit bonding. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(12): 1949-1956. doi: 10.1109/TCPMT.2012.2212195 [18] LOGUNOV S, MARJANOVIC S, BALAKRISHNAN J. Laser assisted frit sealing for high thermal expansion glasses[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(3): 326-333. doi: 10.2961/jlmn.2012.03.0017 [19] KIND H, GEHLEN E, ADEN M, et al. Laser glass frit sealing for encapsulation of vacuum insulation glasses[J]. Physics Procedia, 2014, 56: 673-680. doi: 10.1016/j.phpro.2014.08.075 [20] FU K, LI Y, YIN L Q, et al. Effect of CuO on laser absorption in glass to glass laser bonding[C] //International Conference on Electronic Packaging Technology. New York, USA: IEEE, 2014: 484-488. [21] LI Y, XIAO Y, WANG W, et al. Effect of the viscosity of organic carrier on the quality of laser-assisted glass frit bonding[C]// 17th International Conference on Electronic Packaging Technology (ICEPT). New York, USA: IEEE, 2016: 1146-1150. [22] WANG W, XIAO Y Y, WU X Y, et al. Optimization of laser-assisted glass frit bonding process by response surface methodology[J]. Optics & Laser Technology, 2016, 77: 111-115.