-
图 1a所示为大气湍流(atmospheric turbulence, AT)校正后波前残差干扰下,超振荡原理压缩望远系统点扩散函数的原理示意图。图中,I0、D和δ分别为点扩散函数主瓣强度、局部视场大小和半峰全宽, θ为望远系统的视场角。理想平面波E0(r)经过超振荡光学透镜(super-oscillation lens, SOL)调制后,在望远镜的焦平面上形成超振荡光斑。根据标量菲涅耳衍射积分模型,不考虑大气湍流校正波前残差干扰,望远镜在焦平面形成超振荡光斑的强度函数I(ρ)的数学模型为[17]:
图 1 a—大气湍流校正后波前残差干扰下,超振荡原理压缩望远系统点扩散函数的原理示意图b—振荡光学透镜的二元相位ΦSOL(r)随望远镜半径R的变换规律
Figure 1. a—residual wavefront interference of atmospheric turbulence correction, schematics of diffraction shrinkage point spread function of telescope with super-oscillation principle b—dependence of the binary phase profile of the super-oscillation lens ΦSOL(r) on telescope radius R
$ \begin{gathered} I(\rho)= \\ \left(\frac{2 \pi}{\lambda f}\right)^2\left|\int_0^R E_0(r) \exp \left[\mathrm{i} \Phi_{\text {sol }}(r)\right] \mathrm{J}_0\left(\frac{2 \pi r \rho}{\lambda f}\right) r \mathrm{~d} r\right|^2 \end{gathered} $
(1) 式中,r和ρ分别表示为望远镜瞳面和焦平面的径向坐标,望远镜的工作波长λ和焦距f分别为632.8 nm和1000 mm,望远镜口径为12 mm,ΦSOL(r)为超振荡光学透镜的相位调制函数,J0(·)为零阶贝塞尔函数。根据光的时间反演特性,焦平面光强I(ρ)可通过(1)式逆向线性优化获得相位调制函数ΦSOL(r)。通过初始化约束条件(第一零点位置的压缩比为0.65、暗区视场D=8δ0(艾里斑的第一零点大小δ0=0.61λf/R,R为望远镜半径)、暗区内最高旁瓣/主瓣强度比为0.13),图 1b所示为线性优化获得能够产生预期焦平面光强I(ρ)的相位调制函数ΦSOL(r)。线性优化获得的π相位突变点r1, r2, r3, r4和r5分别为0.984 mm, 2.055 mm, 3.000 mm, 3.966 mm和4.974 mm。图 1b所示的二元相位调制函数代入(1)式可获得无湍流干扰下超振荡望远系统(super-oscillation telescope, SO-telescope)焦平面和观察线的强度分布,如图 2a和图 2d所示。图 2d表明, 理论设计超振荡望远系统点扩散函数的半峰全宽为0.60δ0,衍射压缩倍率为0.71。
图 2 a, d—理论设计的超振荡望远系统焦平面强度和观察线强度分布b, e—中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,望远系统焦平面强度和观察线强度分布c, f—中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,超振荡望远系统焦平面强度和观察线强度分布
Figure 2. a, d—distribution of focal plane intensity and observation line intensity of SO-telescope of theoretical design b, e—distribution of focal plane intensity and observation line intensity of telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength c, f—distribution of focal plane intensity and observation line intensity of SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
图 2所示为无湍流和中等湍流强度下,超振荡衍射压缩望远系统点扩散函数的结果。中等湍流强度下,超振荡望远系统引入工作波长632.8 nm的理想平面波经过自适应光学(adaptive optics, AO)闭环校正后的波前残差均方根(root mean square, RMS)约为波长的1/15时的干扰,AO系统的单元数为137。图 2b和图 2e分别为望远系统焦平面和水平/竖直方向观察线的强度分布。图 2e表明, 仿真艾里斑的半峰全宽约为1.03δ0(δ0=64.355 μm)。对比理想艾里斑尺寸0.84δ0,波前残差导致仿真艾里斑的尺寸存在展宽现象。图 2c所示超振荡望远系统焦平面光强为典型的超振荡光斑,即中心视场的主瓣半高全宽被明显衍射压缩,大气湍流经波前残差干扰后导致暗区的旁瓣强度出现局部干涉相长或相消现象。图 2f表明,理论仿真超振荡光斑的半峰全宽尺寸约为0.773δ0,波前残差导致仿真超振荡光斑与理想超振荡光斑的尺寸0.60δ0存在部分偏差现象;此外,波前残差的随机分布特性导致不同方向观察线的强度分布存在显著差异。图 2表明,中等湍流强度下,超振荡光场调制仍能够实现望远系统点扩散函数的衍射压缩,衍射压缩倍率为0.75(理论设计压缩倍率为0.71)。
-
为了验证超振荡望远系统的细节分辨能力,图 3所示为中等湍流强度校正后波前残差均方根约为波长的1/15时的干扰下,中心间距d分别为64.80 μm, 86.40 μm和122.40 μm,直径为46.80 μm双孔的望远成像结果。望远系统的口径和焦距分别为12 mm和1000 mm,在632.8 nm的工作波长下,瑞利判据可分辨的理论极限为64.355 μm。图 3a和图 3d表明,望远系统无法分辨中心间距64.80 μm的双孔,波前残差导致望远系统点扩散函数展宽,从而导致成像对比度为0。图 3g和图 3j表明,超振荡望远系统能够清楚地分辨双孔,成像对比度为0.154。对比结果表明,超振荡望远系统具备超衍射极限成像的能力。图 3b和图 3c表明,望远系统能够分辨中心间距86.40 μm和122.40 μm双孔;由图 3e和图 3f观察线强度分布可知,成像对比度分别为0.228和0.683。望远系统成像对比度随着中心间距的变化规律,符合理论的预期。与此同时,超振荡望远系统对中心间距86.40 μm和122.40 μm双孔的成像对比度分别为0.397和0.578,如图 3k和图 3l所示。对比图 3a和图 3b、图 3h和图 3i的成像结果, 证明了大气湍流下超衍射望远成像的能力。
图 3 中等湍流强度校正后,波前残差均方根约为波长的1/15时的干扰下,望远系统和超振荡望远系统对不同中心间距双孔的成像结果
Figure 3. Distribution of two holes imaging with different center-to-center distances of telescope and SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
大气湍流下超振荡望远成像的理论研究
Theoretical study of super-oscillation telescope imaging with atmospheric turbulence
-
摘要: 为了实现大气湍流动态干扰下望远镜对远距离目标的超衍射极限成像, 采用光学超振荡原理局部衍射压缩光学系统点扩散函数, 并对提高成像分辨率效果进行了理论研究。结果表明, 中等湍流强度校正后, 波前残差均方根约为波长的1/15(波长λ=632.8 nm)时的干扰下, 超振荡光场调制能够实现望远系统点扩散函数的衍射压缩, 衍射压缩倍率为0.75;对不同中心间距双孔的成像研究验证了超振荡望远系统约0.80倍瑞利衍射极限的超分辨成像效果; 波前残差的均方根大小可能会导致望远系统点扩散函数的衍射压缩倍率和成像分辨率存在差异。此研究结果可应用于高精度星点定位、超分辨望远等领域。Abstract: In order to achieve sub-diffraction limited imaging of the distant objects with telescope under the dynamical disturbance of the atmospheric turbulence, the optical super-oscillation phenomenon was utilized to locally compress the point spread function of the telescope. Theoretical study was performed to investigate the imaging resolution improvement with super-oscillation phenomenon. In the case of the modest atmospheric turbulence, the adaptive optics closed-loop root mean square of the simulated residual wave front error is about 1/15 of wavelength. The numerical full width at half maxima of the super-oscillation spot is about 0.75 times of the Airy spot at the working wavelength of 632.8 nm. In addition, the imaging results of the two holes with different center-to-center distances validate that the resolving ability of the super-oscillation telescope is about 0.80 times of the Rayleigh criterion. Different root mean square of the residual wave front error would result in the diffractive compression ratio of the telescope's point spread function and the improvement of the imaging resolution. It is believed that this study provides a practical method for the high-precision star positioning and the super-resolution telescope etc.
-
Key words:
- Fourier optics /
- telescope /
- super-oscillation /
- atmospheric turbulence
-
图 1 a—大气湍流校正后波前残差干扰下,超振荡原理压缩望远系统点扩散函数的原理示意图b—振荡光学透镜的二元相位ΦSOL(r)随望远镜半径R的变换规律
Figure 1. a—residual wavefront interference of atmospheric turbulence correction, schematics of diffraction shrinkage point spread function of telescope with super-oscillation principle b—dependence of the binary phase profile of the super-oscillation lens ΦSOL(r) on telescope radius R
图 2 a, d—理论设计的超振荡望远系统焦平面强度和观察线强度分布b, e—中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,望远系统焦平面强度和观察线强度分布c, f—中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,超振荡望远系统焦平面强度和观察线强度分布
Figure 2. a, d—distribution of focal plane intensity and observation line intensity of SO-telescope of theoretical design b, e—distribution of focal plane intensity and observation line intensity of telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength c, f—distribution of focal plane intensity and observation line intensity of SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
图 3 中等湍流强度校正后,波前残差均方根约为波长的1/15时的干扰下,望远系统和超振荡望远系统对不同中心间距双孔的成像结果
a, d, g, j—d=64.80 μm b, e, h, k—d=86.40 μm c, f, i, l—d=122.40 μm
Figure 3. Distribution of two holes imaging with different center-to-center distances of telescope and SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
a, d, g, j—d=64.80 μm b, e, h, k—d=86.40 μm c, f, i, l—d=122.40 μm
图 4 中等湍流强度校正后, 波前残差均方根约为波长的1/15时的干扰下,望远系统和超振荡望远系统对不同中心间距双孔的成像对比度变化规律
Figure 4. Distribution of imaging contrast of two holes with different center-to-center distances of telescope and SO-telescope, after moderate turbulence intensity correction, under interference when RMS of wavefront residual is about 1/15 of wavelength
-
[1] 牛顿. 光学[M]. 北京: 北京大学出版社, 2007: 103-104. NEWTON I. Opticks[M]. Beijing: Peking University Press, 2007: 103-104 (in Chinese). [2] 姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45(3): 170489. JIANG W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489 (in Chinese). [3] RAILEIGH L. On the theory of optical images, with special reference to the microscope[J]. Journal of the Royal Microscopical Society, 1903, 23(4): 474-482. doi: 10.1111/j.1365-2818.1903.tb04831.x [4] 玻恩M, 沃尔夫E. 光学原理[M]. 北京: 科学出版社, 2007: 382-383. BORN M, WOLF E. Principles of optics[M]. Beijing: Science Press, 2007: 382-383 (in Chinese). [5] TORALDO G. Super-gain antennas and optical resolving power[J]. Nuovo Cimento Supplemento, 1952, 9(3): 426-435. [6] HEGEDUS Z S, SARAFIS V. Superresolving filters in confocally scanned imaging systems[J]. Journal of the Optical Society of American, 1986, A3(11): 1892-1896. [7] WILSON T, HEWLETT S J. Superresolution in confocal scanning microscopy[J]. Optics Letters, 1991 16(14): 1062-1064. doi: 10.1364/OL.16.001062 [8] CORRAL M M, CABALLERO T, STELZER E, et al. Tailoring the axial shape of the point spread function using the toraldo concept[J]. Optics Express, 2002, 10(1): 98-103. doi: 10.1364/OE.10.000098 [9] DAVIS B J, KARL W C, SWAN A K, et al. Capabilities and limit-ations of pupil-plane filters for superresolution and image enhancement[J]. Optics Express, 2004, 12(17): 4150-4156. doi: 10.1364/OPEX.12.004150 [10] BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics, 2006, A39(22): 6965-6977. [11] ROGER E T, ZHELUDEV N I. Optical super-oscillations: Sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 2013, 15(9): 094008. doi: 10.1088/2040-8978/15/9/094008 [12] HUANG F M, KAO T S, FEDOTOV V A, et al. Nanohole array as a lens[J]. Nano Letters, 2008, 8(8): 2469-2472. doi: 10.1021/nl801476v [13] HUANG F M, ZHELUDEV N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3): 1249-1254. doi: 10.1021/nl9002014 [14] ROGERS E, LINDBERG J, ROY T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. doi: 10.1038/nmat3280 [15] WANG Ch T, TANG D L, WANG Y Q, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5: 18485. doi: 10.1038/srep18485 [16] TANG D L, WANG Ch T, ZHAO Z Y, et al Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719. [17] LI Zh, ZHANG T, WANG Y Q, et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Lasers & Photonics Review, 2018, 12(10): 1800064. [18] CHEN L, LIU J, ZHANG X H, et al. Achromatic super-oscillatory metasurface through optimized multiwavelength functions for sub-di-ffraction focusing[J]. Optics Letters, 2020, 45(20): 5772-5775. doi: 10.1364/OL.404764 [19] 林巧文, 杨春花, 刘红梅, 等. 基于微球透镜远场超分辨率成像方法研究[J]. 激光技术, 2021, 45(6): 686-690. LIN Q W, YANG Ch H, LIU H M, et al. Far-field super-resolution imaging based on microsphere lens[J]. Laser Technology, 2021, 45(6): 686-690(in Chinese).