-
相机标定过程中,涉及到不同坐标系间的坐标转换,主要有全站仪坐标系、望远镜坐标系、相机坐标系以及像素坐标系。为保持与全站仪观测量的一致性,均采用了与全站仪坐标系一致的左手坐标系。
(a) 全站仪坐标系(total station,TS)OTS-XTSYTSZTS,原点为全站仪中心,ZTS轴取全站仪竖轴,XTS轴平行水平度盘零方向,YTS轴由左手系确定。
(b) 望远镜坐标系(telescope,T)OT-XTYTZT,原点取全站仪中心,ZT轴取全站仪望远镜视准轴,YT轴取全站仪横轴,XT轴由左手系确定。当望远镜坐标系处于置零状态时与全站仪坐标系一致。
(c) 相机坐标系(camera,C)OC-XCYCZC,原点为相机光心,ZC轴取相机主光轴,XC轴与像素坐标系XP轴平行且同方向,YC轴由左手系确定。
(d) 像素坐标系(pixel,P)OP-XPYP,建立在相机坐标系ZC=-f的2维平面坐标系,f为相机等效主距。原点为图像左上角,取行方向为XP轴,列方向为YP轴。
图像全站仪相机与全站仪刚性连接,偏心元素为常量,相机坐标系与望远镜坐标系的空间关系如图 1所示。各坐标系的空间关系示意图如图 2所示,其中相机坐标系的ZC轴延长线与像素坐标系平面的交点为像主点(u0, v0)。
-
首先,建立T坐标系至S坐标系的位姿转换。设全站仪照准靶标P时,全站仪水平角、天顶角和距离读数分别为θ0, φ0, s,P点在全站仪坐标系下的坐标为:
$ \boldsymbol{P}_{\mathrm{TS}}=s\left[\begin{array}{c} \sin \varphi_{0} \cos \theta_{0} \\ \sin \varphi_{0} \sin \theta_{0} \\ \cos \varphi_{0} \end{array}\right] $
(1) 驱动全站仪旋转到某一规划指向,此时全站仪水平角、天顶角读数为分别为θ, φ。根据TS坐标系与T坐标系的空间旋转关系可知,TS坐标系绕ZTS轴旋转θ,再绕YTS轴旋转φ,可实现TS坐标系到T坐标系的转换,即:
$ \begin{equation*} \boldsymbol{P}_{\mathrm{T}}=\boldsymbol{R}_{Y_{\mathrm{TS}}}(\varphi) \cdot \boldsymbol{R}_{Z_{\mathrm{TS}}}(\theta) \cdot \boldsymbol{X}_{\mathrm{TS}} \end{equation*} $
(2) 式中: RZTS(θ)、RYTS(φ)为对应旋转矩阵,可表示为:
$ \begin{align*} & \boldsymbol{R}_{Z_{\mathrm{TS}}}(\theta)=\left[\begin{array}{ccc} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right] \end{align*} $
(3) $ \begin{align*} & \boldsymbol{R}_{Y_{\mathrm{TS}}}(\varphi)=\left[\begin{array}{ccc} \cos \varphi & 0 & -\sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi \end{array}\right] \end{align*} $
(4) 式(2)可表示为:
$ \begin{equation*} \boldsymbol{P}_{\mathrm{T}}=s \cdot \boldsymbol{n}_{\mathrm{T}} \end{equation*} $
(5) 式中: nT为靶标中心在望远镜坐标系下的单位方向向量,其计算表达式为:
$ \begin{gather*} \boldsymbol{n}_{\mathrm{T}}=\left[\begin{array}{l} s_{x} \\ s_{y} \\ s_{z} \end{array}\right]= \\ {\left[\begin{array}{c} \cos \varphi \sin \varphi_{0} \cos \left(\theta_{0}-\theta\right)-\sin \varphi \cos \varphi_{0} \\ \sin \varphi_{0} \sin \left(\theta_{0}-\theta\right) \\ \sin \varphi \sin \varphi_{0} \cos \left(\theta_{0}-\theta\right)+\cos \varphi \cos \varphi_{0} \end{array}\right]} \end{gather*} $
(6) 其次,建立T坐标系至C坐标系的位姿转换,根据T坐标系与C坐标系的空间关系有:
$ \boldsymbol{P}_{\mathrm{C}}=\boldsymbol{R}_{X_{\mathrm{T}}}(\alpha) \cdot \boldsymbol{R}_{Y_{\mathrm{T}}}(\beta) \cdot \boldsymbol{R}_{Z_{\mathrm{T}}}(\gamma) \cdot \boldsymbol{P}_{\mathrm{T}}+\left[\begin{array}{l} x_{0} \\ y_{0} \\ z_{0} \end{array}\right] $$ $
(7) 式中: α, β, γ为T坐标系与C坐标系的角度偏移量; x0, y0, z0为位置偏移量。
考虑到无论是广角相机或是望远镜相机,C坐标系至T坐标系的空间转换均为小角度旋转,可将旋转矩阵线性化并取一次项近似代替,有:
$ \boldsymbol{P}_{\mathrm{C}}=\left[\begin{array}{ccc} 1 & \gamma & -\beta \\ -\gamma & 1 & \alpha \\ \beta & -\alpha & 1 \end{array}\right] \boldsymbol{P}_{\mathrm{T}}+\left[\begin{array}{l} x_{0} \\ y_{0} \\ z_{0} \end{array}\right] $
(8) 式(8)也可写为:
$ \begin{equation*} \boldsymbol{P}_{\mathrm{C}}=s \cdot \boldsymbol{n}_{\mathrm{C}} \end{equation*} $
(9) 式中: nC为靶标中心在相机坐标系下的单位方向向量, 其计算表达式为:
$ \boldsymbol{n}_{\mathrm{C}}=\left[\begin{array}{c} c_{x} \\ c_{y} \\ c_{z} \end{array}\right]=\left[\begin{array}{c} s_{x}+\gamma s_{y}-\beta s_{z}+x_{0} / s \\ -\gamma s_{x}+s_{y}+\alpha s_{z}+y_{0} / s \\ \beta s_{x}-\alpha s_{y}+s_{z}+z_{0} / s \end{array}\right] $
(10) 最后,建立C坐标系至P坐标系的坐标转换,由相机成像共线方程有:
$ \begin{equation*} \frac{x-u_{0}}{c_{x}}=\frac{y-v_{0}}{c_{y}}=\frac{f}{c_{z}} \end{equation*} $
(11) 由式(11)可得图像全站仪成像模型为:
$ \left\{\begin{array}{l} x=f_{x} \frac{c_{x}}{c_{z}}+u_{0} \\ y=f_{y} \frac{c_{y}}{c_{z}}+v_{0} \end{array}\right. $
(12) 式中: x, y为靶标中心像素坐标; fx, fy为相机等效主距; u0, v0为像主点坐标。式(12)也可表示为:
$ \left\{\begin{array}{l} x=f_{x} \frac{s_{x}+\gamma s_{y}-\beta s_{z}+x_{0} / s}{\beta s_{x}-\alpha s_{y}+s_{z}+z_{0} / s}+u_{0} \\ y=f_{y} \frac{-\gamma s_{x}+s_{y}+\alpha s_{z}+y_{0} / s}{\beta s_{x}-\alpha s_{y}+s_{z}+z_{0} / s}+v_{0} \end{array}\right. $
(13) -
对式(13)进行线性化,可得线性化观测误差方程为:
$ \begin{equation*} \boldsymbol{V}=\boldsymbol{A} \boldsymbol{X}-\boldsymbol{L} \end{equation*} $
(14) 式中: V为观测残差矩阵; A为参数系数矩阵; X为待解的相机参数; L为观测矩阵。其中:
$ \begin{gather*} \boldsymbol{X}=\left[u_{0}, v_{0}, f_{x}, f_{y}, \alpha, \beta, \gamma, x_{0}, y_{0}, z_{0}\right]^{\mathrm{T}} \end{gather*} $
(15) $ \boldsymbol{L}=\left[\begin{array}{l} x \\ y \end{array}\right] $
(16) 相机参数系数矩阵的计算表达式为:
$ \boldsymbol{A}=\left[\begin{array}{l} \frac{\partial x}{\partial u_{0}} \frac{\partial x}{\partial v_{0}} \frac{\partial x}{\partial f_{x}} \frac{\partial x}{\partial f_{y}} \frac{\partial x}{\partial \alpha} \frac{\partial x}{\partial \beta} \frac{\partial x}{\partial \gamma} \frac{\partial x}{\partial x_{0}} \frac{\partial x}{\partial y_{0}} \frac{\partial x}{\partial z_{0}} \\ \frac{\partial y}{\partial u_{0}} \frac{\partial y}{\partial v_{0}} \frac{\partial y}{\partial f_{x}} \frac{\partial y}{\partial f_{y}} \frac{\partial y}{\partial \alpha} \frac{\partial y}{\partial \beta} \frac{\partial y}{\partial \gamma} \frac{\partial y}{\partial x_{0}} \frac{\partial y}{\partial y_{0}} \frac{\partial y}{\partial z_{0}} \end{array}\right] $
(17) 对式(17)求导取1阶项,简化整理可得:
$ \mathit{\boldsymbol{A = }}\left[ \begin{array}{l} 1\quad 0\quad\frac{{{c_x}}}{{{c_z}}}\quad 0\quad \quad \left( {x - {u_0}} \right)\frac{{{s_y}}}{{{c_z}}}\quad \quad \left( {{u_0} - x} \right)\left( {\frac{{{s_x}}}{{{c_z}}} + \frac{{{s_z}}}{{{c_x}}}} \right)\quad \left( {x - {u_0}} \right)\frac{{{s_y}}}{{{c_x}}}\quad \frac{{x - {u_0}}}{{s{c_x}}}\quad 0\quad \frac{{{u_0} - x}}{{s{c_z}}}\\ 0\quad 1\quad 0\quad \frac{{{c_y}}}{{{c_z}}}\quad \left( {{v_0} - y} \right)\left( {\frac{{{s_z}}}{{{c_y}}} + \frac{{{s_y}}}{{{c_z}}}} \right)\quad \quad \left( {y - {v_0}} \right)\frac{{{s_x}}}{{{c_z}}}\quad\quad \left( {{v_0} - y} \right)\frac{{{s_x}}}{{{c_y}}}\quad \quad 0\quad \frac{{y - {v_0}}}{{s{c_y}}}\quad \frac{{{v_0} - y}}{{s{c_z}}} \end{array} \right] $
(18) 采用最小二乘方法求解相机参数,有:
$ \begin{equation*} \boldsymbol{X}=\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{A}\right)^{-1} \boldsymbol{A} \boldsymbol{P} \boldsymbol{L} \end{equation*} $
(19) 式中: P为观测量的权矩阵。由于标定参数间存在的强相关性,直接组建标定方程求解时标定方程可能奇异,无法正确求解,应当分析变量间的相关性,解决参数强相关性问题。
-
通过参数之间的偏导数关系,对参数的相关性展开分析,具体为:
$ \begin{gather*} {\left[\begin{array}{llll} \frac{\partial \beta}{\partial x_{0}} & \frac{\partial \beta}{\partial u_{0}} & \frac{\partial x_{0}}{\partial u_{0}} & \frac{\partial z_{0}}{\partial f_{x}} \\ \frac{\partial \alpha}{\partial y_{0}} & \frac{\partial \alpha}{\partial v_{0}} & \frac{\partial y_{0}}{\partial v_{0}} & \frac{\partial z_{0}}{\partial f_{y}} \end{array}\right]=} \\ {\left[\begin{array}{llll} \frac{\partial x / \partial x_{0}}{\partial x / \partial \beta} & \frac{\partial x / \partial u_{0}}{\partial x / \partial \beta} & \frac{\partial x / \partial u_{0}}{\partial x / \partial x_{0}} & \frac{\partial x / \partial f_{x}}{\partial x / \partial z_{0}} \\ \frac{\partial y / \partial y_{0}}{\partial y / \partial \alpha} & \frac{\partial y / \partial v_{0}}{\partial y / \partial \alpha} & \frac{\partial y / \partial v_{0}}{\partial y / \partial y_{0}} & \frac{\partial y / \partial f_{y}}{\partial y / \partial z_{0}} \end{array}\right]} \end{gather*} $
(20) 经计算整理有:
$ \begin{array}{c} {\left[\begin{array}{llll} \frac{\partial \beta}{\partial x_{0}} & \frac{\partial \beta}{\partial u_{0}} & \frac{\partial x_{0}}{\partial u_{0}} & \frac{\partial z_{0}}{\partial f_{x}} \\ \frac{\partial \alpha}{\partial y_{0}} & \frac{\partial \alpha}{\partial v_{0}} & \frac{\partial y_{0}}{\partial v_{0}} & \frac{\partial z_{0}}{\partial f_{y}} \end{array}\right]=} \\ {\left[\begin{array}{cccc} \frac{-c_{z} / s}{c_{x} s_{x}+c_{z} s_{z}} & \frac{-c_{z}^{2} / f_{x}}{c_{x} s_{x}+c_{z} s_{z}} & \frac{s c_{z}}{f_{x}} & \frac{s c_{z}}{-f_{x}} \\ \frac{c_{z} / s}{c_{y} s_{y}+c_{z} s_{z}} & \frac{c_{z}^{2} / f_{y}}{c_{y} s_{y}+c_{z} s_{z}} & \frac{s c_{z}}{f_{y}} & \frac{s c_{z}}{-f_{y}} \end{array}\right]} \end{array} $
(21) 式中: 相机主距fx和fy可视作常数,偏心元素的各项数值均为小量常数,可计算出sz, cz的值趋于1,远大于sx, sy, cx, cy。当考虑单距离旋转摄影标定时,即摄影距离s为常量时,式(21)中各项导数计算值均近似为常数,即β, x0, u0强相关,α、y0、v0强相关,fx, fy, z0强相关,故通过单距离观测进行相机标定时,仅可考虑变量u0, v0, fx, fy, γ进行标定解算,无法解算出参数α, β, x0, y0, z0。
当考虑多距离旋转摄影标定时,即摄影距离s为变量时,式(21)中∂β/∂u0, ∂α/∂v0的值近似不变,其余项的计算值线性变化,即x0, y0, z0与摄影距离s线性相关,故通过多距离观测整体解算可解耦x0, y0, z0,但无法解算α, β。经分析认为,需改变相机相对全站仪的位置才能解耦α, β,这可以通过切换全站仪度盘来改变相机相对全站仪的位置,采用双盘观测的方式解耦α, β。
-
将望远镜绕水平方向旋转180°,再绕竖直方向旋转180°可实现全站仪度盘切换。切换观测度盘会改变相机相对全站仪的位置,假设在盘左观测中偏心元素为x0, y0, z0, α, β, γ,在盘右观测中偏心元素则为-x0, -y0, z0, -α, -β, γ。令盘左观测时靶标像素坐标为(xl, yl),盘右观测时靶标像素坐标为(xr, yr)。盘右图像成正像显示,观测数据需作镜像处理,将式(12)对应参数进行修正,可得盘右观测时对应的成像方程为:
$ \left\{\begin{array}{l} x_{\mathrm{r}}=f_{x} \frac{-s_{x}-\gamma s_{y}-\beta s_{z}+x_{0} / s}{-\beta s_{x}+\alpha s_{y}+s_{z}+z_{0} / s}+\left(R-u_{0}\right) \\ y_{\mathrm{r}}=f_{y} \frac{\gamma s_{x}-s_{y}+\alpha s_{z}+y_{0} / s}{-\beta s_{x}+\alpha s_{y}+s_{z}+z_{0} / s}+\left(C-v_{0}\right) \end{array}\right. $
(22) 式中: R为图像的行数; C为图像的列数。构建双盘观测方程为:
$ \left\{\begin{array}{l} x_{1}=f_{x} \frac{s_{x}+\gamma s_{y}-\beta s_{z}+x_{0} / s}{\beta s_{x}-\alpha s_{y}+s_{z}+z_{0} / s}+u_{0} \\ y_{1}=f_{y} \frac{-\gamma s_{x}+s_{y}+\alpha s_{z}+y_{0} / s}{\beta s_{x}-\alpha s_{y}+s_{z}+z_{0} / s}+v_{0} \\ x_{\mathrm{r}}=f_{x} \frac{-s_{x}-\gamma s_{y}-\beta s_{z}+x_{0} / s}{-\beta s_{x}+\alpha s_{y}+s_{z}+z_{0} / s}+\left(R-u_{0}\right) \\ y_{\mathrm{r}}=f_{y} \frac{\gamma s_{x}-s_{y}+\alpha s_{z}+y_{0} / s}{-\beta s_{x}+\alpha s_{y}+s_{z}+z_{0} / s}+\left(C-v_{0}\right) \end{array}\right. $
(23) 利用式(23),在多个距离上扫描目标的盘左和盘右成像坐标,通过整体平差解算可求解出全部相机参数。借鉴分步求解思路来降低参数耦合的影响,先假设参数α、β值为0°,通过整体平差解出参数fx, fy, u0, v0, γ, x0, y0, z0,此时α、β耦合在u0、v0中,后通过某种方式单独解算α、β,再对u0、v0进行修正。
由式(23)可构建双盘观测量:
$ \left\{\begin{align*} \frac{x_{1}+x_{\mathrm{r}}}{2}= & \frac{f_{x}}{2}\left(\frac{s_{x}+\gamma s_{y}-\beta s_{z}+x_{0} / s}{\beta s_{x}-\alpha s_{y}+s_{z}+z_{0} / s}+\right. \\ & \left.\frac{-s_{x}-\gamma s_{y}-\beta s_{z}+x_{0} / s}{-\beta s_{x}+\alpha s_{y}+s_{z}+z_{0} / s}\right)+\frac{R}{2} \\ \frac{y_{1}+y_{\mathrm{r}}}{2}= & \frac{f_{y}}{2}\left(\frac{-\gamma s_{x}+s_{y}+\alpha s_{z}+y_{0} / s}{\beta s_{x}-\alpha s_{y}+s_{z}+z_{0} / s}+\right. \\ & \left.\frac{\gamma s_{x}-s_{y}+\alpha s_{z}+y_{0} / s}{-\beta s_{x}+\alpha s_{y}+s_{z}+z_{0} / s}\right)+\frac{C}{2} \end{align*}\right. $
(24) 忽略小量βsx, αsy,整理化简可得:
$ \left\{\begin{array}{l} \frac{x_{1}+x_{\mathrm{r}}}{2}=-\beta f_{x}+f_{x} \frac{x_{0}}{s s_{z}}+\frac{R}{2} \\ \frac{y_{1}+y_{\mathrm{r}}}{2}=\alpha f_{y}+f_{y} \frac{y_{0}}{s s_{z}}+\frac{C}{2} \end{array}\right. $
(25) 可得到α, β的计算式为:
$ \left\{\begin{array}{l} \beta=\frac{x_{0}}{s s_{z}+z_{0}}+\frac{R}{2 f_{x}}-\frac{x_{1}+x_{\mathrm{r}}}{2 f_{x}} \\ \alpha=-\frac{y_{0}}{s s_{z}+z_{0}}-\frac{C}{2 f_{y}}+\frac{y_{1}+y_{\mathrm{r}}}{2 f_{y}} \end{array}\right. $
(26) 在解得α, β的基础上,对像主点坐标做相应修正,可获得实际像主点坐标值u0, v0:
$ \left\{\begin{array}{l} \bar{u}_{0}=u_{0}-f_{x} \beta \\ \bar{v}_{0}=v_{0}+f_{y} \alpha \end{array}\right. $
(27) -
由于镜头设计的复杂性和工艺水平等因素的影响,镜头折射率不一致,光学器件存在偏移,导致实际成像点(x′, y′)与理论像点(x, y)之间存在像素偏差(δx, δy),即:
$ \left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{l} x^{\prime} \\ y^{\prime} \end{array}\right]+\left[\begin{array}{l} \delta_{x} \\ \delta_{y} \end{array}\right] $
(28) Brown-Conrady畸变理论认为存在3种畸变类型,分别为径向畸变、偏心畸变和薄棱镜畸变[19]。同时考虑这3种畸变,相机畸变模型可表示为:
$ \left\{\begin{align*} \delta_{x}= & \left(x-u_{0}\right)\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right)+ \\ & 2 \rho_{1}\left(x-u_{0}\right)\left(y-v_{0}\right)+\rho_{2}\left(r^{2}+2 x^{2}\right)+s_{1} r^{2} \\ \delta_{y}= & \left(y-v_{0}\right)\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right)+ \\ & 2 \rho_{2}\left(x-u_{0}\right)\left(y-v_{0}\right)+\rho_{1}\left(r^{2}+2 y^{2}\right)+s_{2} r^{2} \end{align*}\right. $
(29) 式中: $ r=\sqrt{\left(x-u_0\right)^2+\left(y-v_0\right)^2}$,表示像点到透视中心的像素距离;k1, k2, k3为径向畸变系数;ρ1和ρ2为偏心畸变系数;s1和s2为薄棱镜畸变系数。
-
基于上述理论,本文作者对TS60图像全站仪进行相机标定实验。TS60同时具有望远镜相机和广角相机,望远镜相机为变焦相机,视场角为1.5°,广角相机为定焦相机,视场角为19.4°,成像规格为2560 pixel×1920 pixel(R×C)。标定靶标采用同心圆环靶标,设计有十字丝便于全站仪初始精确照准。设计在8 m、12 m、16 m、20 m、24 m、30 m的距离进行望远镜相机和广角相机的图像采集。设定合适的摄影间隔使得标定靶标在视域内均匀分布成像,本文中设计旋转摄影照片数量为26×24,对应广角相机旋转摄影方位角和高度角摄影间隔分别为35.77′和29.25′,对应望远镜相机旋转摄影方位角和高度角摄影间隔分别为2.77′和2.25′,在单个距离采集624张靶标图像。基于C#实现计算机与全站仪的蓝牙通讯,参照手册开发计算机程序控制全站仪相机驱动到规划的角度姿态对靶标进行拍照,实现靶标图像自动化数据采集。实验室现场环境如图 3所示。望远镜相机获得的部分靶标图像集如图 4所示。
相机标定流程如下:(a)通过中心提取算法[20-21]获取靶标中心像素坐标(x, y),并记录对应的摄影方向(θ, φ);(b)仅考虑参数u0, v0, fx, fy, γ进行解算,作为后续求解的初值;(c)采用多距离双盘观测整体解算模型解算变量u0, v0, fx, fy, γ, x0, y0, z0;(d)构建双盘观测量解算α, β,在此基础上对像主点坐标进行改正;(e)广角相机考虑相机畸变参数k1、k2,望远镜相机考虑畸变参数k1,求解相机畸变参数;(f)通过畸变参数对靶标像素坐标做相应改正,重复步骤(b)~(f),直至求解的参数变化量小于容许值,获得最终相机标定参数。
-
表 1中为采用单个距离的望远镜相机盘左和盘右观测数据进行相机标定的结果。表中, 全站仪观测度盘面值(face)为0表示盘左观测,度盘面值为1表示盘右观测,mr表示平均重投影点位误差,为中心提取算法获取的靶标中心像素坐标与通过模型计算得到的靶标中心像素坐标的平均差值。表 2中为联合所有观测距离的望远镜相机盘左和盘右观测数据分别进行标定解算的结果。
表 1 望远镜相机单距离观测标定解算
Table 1. Calibration solution of telescope camera for single distance observation
face s/m u0/pixel v0/pixel fx /pixel fy /pixel γ /(″) mr/pixel 0 8.11 962.47 1280.89 105588.46 105588.45 487.45 0.12 1 8.11 958.52 1279.37 105565.96 105592.29 491.36 0.10 0 12.27 962.05 1281.44 105484.74 105526.00 490.01 0.10 1 12.27 961.19 1280.47 105492.32 105529.98 478.04 0.12 0 15.83 962.02 1281.02 105512.10 105550.65 492.63 0.08 1 15.83 958.84 1278.62 105512.43 105542.27 477.48 0.07 0 19.85 962.37 1283.05 105522.13 105499.94 461.41 0.37 1 19.85 959.45 1279.93 105501.19 105508.14 489.65 0.14 0 23.93 960.35 1283.33 105465.85 105487.35 481.27 0.12 1 23.93 961.68 1280.78 105471.87 105584.78 522.80 0.18 0 29.70 961.57 1283.24 105462.67 105444.87 475.50 0.26 1 29.70 958.84 1277.76 105447.33 105467.91 450.16 0.19 表 2 望远镜相机多距离观测标定解算
Table 2. Calibration solution of telescope camera for multiple distance observation
face u0/pixel v0/pixel fx/pixel fy/pixel α/(″) β/(″) γ/(″) x0/mm y0/mm z0/mm k1/10-10 mr/pixel 0 960.63 1282.91 105392.33 105382.56 -6.30 2.30 496.28 0.16 -0.15 -15.77 -3.13 0.88 1 959.46 1279.69 105412.70 105452.90 -6.30 2.30 493.64 0.01 -0.01 -12.13 -4.76 1.15 由表 1与表 2可知:望远镜相机不同距离同盘观测的像主点坐标较为稳定,同一距离不同度盘观测的像主点坐标平均差异为2 pixel;单距离观测相机主距有随摄影距离增加而减小的趋势,与多距离观测主距最大差异为205 pixel,对应引起图像边缘的角度最大变化约7.0″;单盘解算平均重投影误差为0.15 pixel,对应图像分辨率0.3″,多距离解算平均重投影误差为1.02 pixel,对应的图像角分辨率约2.0″。
表 3中为采用单个距离的广角相机盘左和盘右观测数据进行相机标定的结果。表 4中为联合所有观测距离的广角相机盘左和盘右观测数据分别进行标定解算的结果。由表 3与表 4可知:广角相机单距离观测的像主点坐标存在明显变化,其中u0分量有随摄影距离增加而减小的趋势,v0分量有随摄影距离增加而增大的趋势,体现了偏心元素与相机参数耦合对相机标定的影响;单距离观测相机主距与多距离观测主距最大差异为59 pixel,对应引起图像边缘的角度最大变化约23″;单盘解算平均重投影误差为0.72 pixel,对应图像分辨率15.5″,多距离解算平均重投影误差为0.6 pixel,对应的图像角分辨率约13.3″。
表 3 广角相机单距离观测标定解算
Table 3. Calibration solution of wide-angle camera for single distance observation
face s/m u0/pixel v0/pixel fx/pixel fy/pixel γ/(″) mr/pixel 0 8.11 1033.24 1267.07 9438.46 9433.63 -64.21 0.91 1 8.11 1030.93 1265.02 9439.43 9434.14 -71.99 0.86 0 12.27 1009.08 1273.66 9414.37 9409.81 -37.40 0.92 1 12.27 1007.02 1271.27 9414.72 9410.60 -46.64 0.88 0 15.83 998.50 1276.43 9407.02 9402.95 -46.28 0.76 1 15.83 996.38 1273.87 9405.88 9401.83 -52.03 0.80 0 19.85 991.33 1278.15 9405.75 9402.92 -55.70 0.57 1 19.85 989.26 1276.18 9407.07 9401.63 -51.05 0.61 0 23.93 986.43 1279.06 9412.55 9411.97 -15.19 0.61 1 23.93 984.45 1277.25 9409.08 9406.26 -49.37 0.47 0 29.70 981.64 1280.41 9396.30 9401.08 -19.98 0.80 1 29.70 979.66 1278.31 9400.80 9401.36 -41.03 0.48 表 4 广角相机多距离观测标定解算
Table 4. Calibration solution of wide-angle camera for single distance observation
face u0/pixel v0/pixel fx/pixel fy/pixel α/(″) β/(″) γ/(″) x0/mm y0/mm z0/mm k1/10-9 k2/10-15 mr/pixel 0 962.48 1285.71 9380.27 9379.64 -50.16 40.97 -45.15 60.58 -15.88 -48.09 3.33 -3.26 0.61 1 960.61 1283.43 9384.54 9383.22 -50.16 40.97 -50.53 60.22 -15.88 -45.34 2.32 -2.32 0.58 望远镜相机多距离观测数据进行整体观测的重投影误差图如图 5所示。广角相机多距离观测数据进行整体观测的重投影误差图如图 6所示。图 5、图 6为利用相机多距离观测标定结果作为相机参数计算的靶标理论像素坐标与中心提取算法获得的靶标中心像素坐标的误差矢量图。从图中可发现,图像中心视域重投影误差较小,视域边缘重投影误差相对较大,说明相机中心视域内的图像测量精度更高。
从实验结果来看,有:(a)望远镜单距离简化模型中,望远镜相机可视作同轴安置,不同摄影距离相机像主点位置较为稳定,变化量主要体现在分量引起的主距变化;广角相机应视为偏心安置,偏心元素对相机标定解算的影响极大,主要表现为分量引起相机像主点位置在不同摄影距离下明显变化;(b)通过多距离双盘观测联合解算模型可以有效解决标定参数的耦合问题,由此得到的相机参数适用于不同摄影距离的图像测量,其中望远镜相机多距离变焦摄影图像的角度分辨率可达2.0″,单个距离定焦摄影时的角度分辨率可达0.3″;广角相机多距离摄影图像角度分辨率达13.3″;只利用相机的中心视域进行图像测量有更高的角度分辨率,相机标定结果可满足高精度的图像测量要求;(c)望远镜相机多距离多参数模型的标定解算精度低于单距离简化模型标定解算精度,这主要是因为望远镜相机采用了对焦系统,不同距离拍摄过程中需要重新调焦,由此会带来相机焦距和主光轴方向的变化。
在传统相机标定法中,标定场是由全站仪人工测量的系列非共面点的绝对坐标组成,采用这种方式整个控制网的布设过程费时耗力且成本高昂,且控制点的布设还存在通视上的限制;有时囿于加工精度的制约,标定板和标定块不能无限制增大,在广角相机标定时和在较远距离进行相机标定时,标定板和标定块在成像视域内所占图幅较小,控制点难以在成像视域内均匀分布,这会降低传统相机标定解算精度。同时,传统相机标定法要求对控制场进行多距离多视角的摄影,拍摄过程中更多的是使用人工拍摄,拍摄作业的自动化程度低。这些存在的问题,在本文中都得到了克服,很大程度上保证了方法的优势。
单目标旋转摄影方法标定图像全站仪相机
Camera calibration of image total station by single-target rotatry photography
-
摘要: 为了实现图像全站仪望远镜相机和广角相机的高精度标定, 采用单目标旋转摄影法推导了旋转摄影模式下图像全站仪的相机标定模型, 并对模型参数展开相关性分析, 针对其中存在的参数耦合问题, 提出了双盘观测法进行参数解耦; 对单目标旋转摄影方法的可行性进行了实验验证, 取得了图像全站仪望远镜相机和广角相机的高精度标定结果。结果表明, 标定得到的相机参数可用于不同摄影距离的图像测量, 望远镜相机标定点重投影误差平均为1.0 pixel, 对应图像角分辨率达2.0″; 望远镜相机定焦摄影时标定点重投影误差平均为0.15 pixel, 对应图像角分辨率达0.3″; 广角相机标定点重投影误差平均为0.6 pixel, 对应图像角分辨率达13.3″。该研究对提高图像全站仪的图像测量精度及拓展其相关应用有一定参考意义。Abstract: In order to achieve high-precision camera calibration of the image total station telescope camera and a wide-angle camera, a camera calibration model for the image total station in rotary photography mode was derived using a single target rotary photography method, and the correlation analysis of model parameters was performed. Aiming at the parameter coupling problem, a double-face observation method was proposed for parameter decoupling. The feasibility of the single target rotary photography method was experimentally verified, and high-precision calibration results of the image total station telescope camera and the wide-angle camera were obtained. The results show that the camera parameters obtained from calibration can be used for image measurement at different photographic distances, with an average reprojection error of 1.0 pixel at the calibration points of the telescope camera, and the corresponding image angular resolution is 2.0″. The average reprojection error at the calibration point during fixed focus photography with a telescope camera is 0.15 pixel, and the corresponding image angular resolution is 0.3″. The average reprojection error at the calibration point of a wide-angle camera is 0.6 pixel, and the corresponding image angular resolution is 13.3″. This research has certain reference significance for improving the image measurement accuracy of the image total station and expanding its related applications.
-
表 1 望远镜相机单距离观测标定解算
Table 1. Calibration solution of telescope camera for single distance observation
face s/m u0/pixel v0/pixel fx /pixel fy /pixel γ /(″) mr/pixel 0 8.11 962.47 1280.89 105588.46 105588.45 487.45 0.12 1 8.11 958.52 1279.37 105565.96 105592.29 491.36 0.10 0 12.27 962.05 1281.44 105484.74 105526.00 490.01 0.10 1 12.27 961.19 1280.47 105492.32 105529.98 478.04 0.12 0 15.83 962.02 1281.02 105512.10 105550.65 492.63 0.08 1 15.83 958.84 1278.62 105512.43 105542.27 477.48 0.07 0 19.85 962.37 1283.05 105522.13 105499.94 461.41 0.37 1 19.85 959.45 1279.93 105501.19 105508.14 489.65 0.14 0 23.93 960.35 1283.33 105465.85 105487.35 481.27 0.12 1 23.93 961.68 1280.78 105471.87 105584.78 522.80 0.18 0 29.70 961.57 1283.24 105462.67 105444.87 475.50 0.26 1 29.70 958.84 1277.76 105447.33 105467.91 450.16 0.19 表 2 望远镜相机多距离观测标定解算
Table 2. Calibration solution of telescope camera for multiple distance observation
face u0/pixel v0/pixel fx/pixel fy/pixel α/(″) β/(″) γ/(″) x0/mm y0/mm z0/mm k1/10-10 mr/pixel 0 960.63 1282.91 105392.33 105382.56 -6.30 2.30 496.28 0.16 -0.15 -15.77 -3.13 0.88 1 959.46 1279.69 105412.70 105452.90 -6.30 2.30 493.64 0.01 -0.01 -12.13 -4.76 1.15 表 3 广角相机单距离观测标定解算
Table 3. Calibration solution of wide-angle camera for single distance observation
face s/m u0/pixel v0/pixel fx/pixel fy/pixel γ/(″) mr/pixel 0 8.11 1033.24 1267.07 9438.46 9433.63 -64.21 0.91 1 8.11 1030.93 1265.02 9439.43 9434.14 -71.99 0.86 0 12.27 1009.08 1273.66 9414.37 9409.81 -37.40 0.92 1 12.27 1007.02 1271.27 9414.72 9410.60 -46.64 0.88 0 15.83 998.50 1276.43 9407.02 9402.95 -46.28 0.76 1 15.83 996.38 1273.87 9405.88 9401.83 -52.03 0.80 0 19.85 991.33 1278.15 9405.75 9402.92 -55.70 0.57 1 19.85 989.26 1276.18 9407.07 9401.63 -51.05 0.61 0 23.93 986.43 1279.06 9412.55 9411.97 -15.19 0.61 1 23.93 984.45 1277.25 9409.08 9406.26 -49.37 0.47 0 29.70 981.64 1280.41 9396.30 9401.08 -19.98 0.80 1 29.70 979.66 1278.31 9400.80 9401.36 -41.03 0.48 表 4 广角相机多距离观测标定解算
Table 4. Calibration solution of wide-angle camera for single distance observation
face u0/pixel v0/pixel fx/pixel fy/pixel α/(″) β/(″) γ/(″) x0/mm y0/mm z0/mm k1/10-9 k2/10-15 mr/pixel 0 962.48 1285.71 9380.27 9379.64 -50.16 40.97 -45.15 60.58 -15.88 -48.09 3.33 -3.26 0.61 1 960.61 1283.43 9384.54 9383.22 -50.16 40.97 -50.53 60.22 -15.88 -45.34 2.32 -2.32 0.58 -
[1] WAGNER A. A new approach for geo-monitoring using modern total stations and RGB + D images[J]. Measurement, 2016, 82: 64-74. doi: 10.1016/j.measurement.2015.12.025 [2] YANG D L, ZOU J G. Precise levelling in crossing river over 5 km using total station and GNSS[J]. Scientific Reports, 2021, 11(1): 1-12. doi: 10.1038/s41598-020-79139-8 [3] ZHOU J G, LUO Ch, JIANG W W, et al. Using UAVs and robotic total stations in determining height differences when crossing obstacles[J]. Measurement, 2022, 188: 110372. doi: 10.1016/j.measurement.2021.110372 [4] CHENG Z J, WANG H G, HAN L Y, et al. An improved total station measurement method for the georeferenced orientation of self-propelled artillery barrel[J]. Measurement, 2022, 198: 111376. doi: 10.1016/j.measurement.2022.111376 [5] WANGER A. New geodetic monitoring approaches using image assisted total station [D]. Munich, Germany: Technical University of Munich, 2017: 5-21. [6] 时春霖, 叶凯, 张超, 等. 视频测量机器人在野外天文测量中的应用[J]. 测绘科学技术学报, 2018, 35(2): 153-158. SHI Ch L, YE K, ZHANG Ch, et al. Application of video measuring robot in field astronomical survey[J]. Journal of Geomatics Science and Technology, 2018, 35(2): 153-158(in Chinese). [7] 郎松, 曹选, 张艳微, 等. 融合改进YOLOv5算法的图像全站仪全自动测量方法[J]. 仪器仪表学报, 2022, 43(5): 120-127. LANG S, CAO X, ZHANG Y W, et al. Fully automated measurement method of image total station based on the improved YOLOv5 algorithm[J]. Chinese Journal of Scientific Instrument, 2022, 43(5): 120-127(in Chinese). [8] 靳志光. 图像全站仪系统若干技术问题研究及应用[D]. 郑州: 解放军信息工程大学, 2008: 24-47. JIN Zh G. Some technique questions and application about the image total station system[D]. Zhengzhou: Information Engineering University, 2008: 24-47(in Chinese). [9] 章后甜, 郑勇, 陈冰, 等. 图像全站仪及图像测量发展与展望[J]. 测绘通报, 2021(6): 50-53. ZHANG H T, ZHENG Y, CHEN B, et al. Development and prospect of image assisted total station and image measurement[J]. Bulletin of Surveying and Mapping, 2021(6): 50-53(in Chinese). [10] 张旭, 张超, 时春霖, 等. 图像全站仪相机的一种快速标定方法[J]. 测绘科学, 2022, 47(7): 53-59. ZHANG X, ZHANG Ch, SHI Ch L, et al. A fast calibration method for image total station camera[J]. Science of Surveying and Mapping, 2022, 47(7): 53-59(in Chinese). [11] EHRHART M, LIENHART W. Monitoring of civil engineering structures using a state-of-the-art image assisted total station[J]. Journal of Applied Geodesy, 2015, 9(3): 174-182. [12] 宋世泽. 星空仿真穹顶建立及鱼眼相机检校技术[D]. 郑州: 解放军信息工程大学, 2017: 75-100. SONG Sh Z. The establishment of dome based on simulated star sky and fisheye camera calibration [D]. Zhengzhou: Information Engineering University, 2017: 75-100(in Chinese). [13] 叶峰, 王敏, 陈剑东, 等. 共面点的摄像机非线性畸变校正[J]. 光学精密工程, 2015, 23(10): 2962-2970. YE F, WANG M, CHEN J D, et al. Camera nonlinear distortion correction based on coplanar points[J]. Optics and Precision Engineering, 2015, 23(10): 2962-2970(in Chinese). [14] 石岩青, 常彩霞, 刘小红, 等. 面阵相机内外参数标定方法及进展[J]. 激光与光电子学进展, 2021, 58(24): 2400001. SHI Y Q, CHANG C X, LIU X H, et al. Calibration methods and progress for internal and external parameters of area-array camera[J]. Laser and Optoelectronics Progress, 2021, 58(24): 2400001(in Chinese). [15] 张祖勋. 论摄影测量与工程测量的结合-摄影全站仪+数码摄影机[J]. 地理空间信息, 2004(6): 1-4. doi: 10.3969/j.issn.1672-4623.2004.06.001 ZHANG Z X. Integration of photogrammetry and engineering surveying-photo total station and digital camera [J]. Geospatial Information, 2004(6): 1-4 (in Chinese). doi: 10.3969/j.issn.1672-4623.2004.06.001 [16] 朱肇昆. 经纬像机摄像测量方法研究[D]. 长沙: 国防科学技术大学, 2010: 18-48. ZHU Zh K. Research on theodolite-camera videometrics[D]. Chang-sha: National University of Defense Technology, 2010: 18-48(in Chinese). [17] 张正禄. 徕卡图像全站仪TS15i及其应用评述[J]. 测绘通报, 2012(1): 98-99. ZHANG Zh L. Leica image total station TS15i and its application review [J]. Bulletin of Surveying and Mapping, 2012(1): 98-99(in Chinese). [18] 张祖勋, 詹总谦, 郑顺义, 等. 摄影全站仪系统——数字摄影测量与全站仪的集成[J]. 测绘通报, 2005(11): 4-8. ZHANG Z X, ZHAN Z Q, ZHENG Sh Y, et al. Photo total station system—the integration of digital photogrammetry and total station[J]. Bulletin of Surveying and Mapping, 2005(11): 4-8(in Chin-ese). [19] BROWN D C. Close- range camera calibration[J]. Photogrammetric Engineering and Remote Sensing, 1971, 37(8): 855-866. [20] 张晓林, 周哲海, 王晓玲, 等. 基于改进Zernike方法实现圆形边缘亚像素检测[J]. 计算机工程与应用, 2015, 51(20): 157-161. ZHANG X L, ZHOU Zh H, WANG X L, et al. Realizing circular subpixel edge detection based on improved Zernike method[J]. Computer Engineering and Applications, 2015, 51(20): 157-161(in Chinese). [21] 安晶晶, 高楠, 陈超, 等. 圆环标识的离心偏差校正方法与评价[J]. 激光与光电子学进展, 2017, 54(4): 041203. AN J J, GAO N, CHEN Ch, et al. Correcting method and evaluation of eccentricity error of circle target[J]. Laser and Optoelectronics Progress, 2017, 54(4): 041203 (in Chinese).