-
本文中采用FC-Ⅲ型3维测风激光雷达,该雷达于2017年部署于西宁曹家堡国际机场(国际民用航空组织机场代码: ZLXN),并于2019年底业务化运行。该雷达采用波长为1.55 μm的脉冲激光测量气溶胶粒子运动引起的信号多普勒频移来测量风的径向矢量,具有水平探测距离广、角度和距离分辨率高、探测模式多样、产品丰富等特点。为了掌握机场跑道上空及周边区域的空中流场态势,激光雷达可以根据探测目的选择不同的扫描模式,FC-Ⅲ型雷达共有4种扫描模式[27],其中多普勒波束扫描(Doppler beam swinging,DBS)通过获取雷达上空水平风和垂直气流的廓线数据了解大气边界层风场变化趋势;平面扫描(plan position indicator,PPI)可以用于观测雷达探测范围内不同仰角下水平风场的演变情况;高度扫描(range height indicator,RHI)可沿任意方获取风场的垂直剖面信息,可针对飞机尾流进行测量;下滑道扫描(glide path,GP)则可获得下滑道附近的风场信息,可较好反映航空器遇到的迎头风和侧风变化,并对航空器在起飞离场和降落进场过程中遇到的湍流和风切变进行告警。FC-Ⅲ型激光雷达系统的主要技术参数见表 1。
表 1 FC-Ⅲ型激光雷达的参数
Table 1. Main parameters of FC-Ⅲ LiDAR
parameters value average power ≤200 W wavelength 1.55 μm scan range(azimuth/pitch) 0°~360°/0°~90° detection range 10 km range resolution 50 m/75 m/100 m scanning mode DBS/PPI/RHI/GP angle resolution ≤0.1° wind speed range -60 m/s~+60 m/s wind velocity accuracy ≤0.5 m/s products radial velocity, vertical speed, spectrum width, etc. 西宁曹家堡国际机场位于青藏高原东北湟水河流域,距离西宁市中心约28 km,海拔2184 m,四周环山,地形复杂,西宁机场地形及探测设备分布如图 1所示。机场跑道全长3800 m,跑道方位角分别为110°和290°,机场跑道两侧自动站位置分别对应跑道编号为29#和11#,见图 1b。由于高原特殊的地理环境,夏季太阳辐射较强,晴朗的午后地面升温较快,由于热力和地形抬升作用,常在机场上游产生发展旺盛的雷暴云团,当雷暴移近机场区域时会造成大风和风切变。
1.55 μm激光雷达高原机场下击暴流探测应用研究
Application research of 1.55 μm wind LiDAR in detecting downburst on a plateau airport
-
摘要: 为了探究激光雷达在湿下击暴流天气时的风场探测效果和低空风切变识别能力,采用多元资料结合具体事件进行理论分析和数据验证的方法,利用西宁曹家堡国际机场的测风激光雷达数据,结合地面观测记录,对2021-05-18的一次湿下击暴流过程进行了分析和研究。结果表明,下击暴流具有复杂的风场结构,主体到达机场前,首先造成了超过14 m/s的外流,并与环境风耦合形成逆风切变辐合线,且最强外流区位于辐合线后侧1 km~2 km;下击暴流抵达跑道上空时,造成了地面辐散风场,辐散中心风速远小于外流边缘且垂直气流存在着剧烈变化,下击暴流共持续约10 min;测风激光雷达对雷暴云内部垂直气流分布、跑道区域下击暴流辐散风场的水平和垂直结构以及地面风场辐合线的形成和演变均有良好的识别效果,交互使用雷达不同探测模式和数据产品有利于机场低空风切变的监测和预警。该研究为激光雷达在下击暴流风切变预报和研究中的应用提供了参考。Abstract: To explore the wind field detection effect and low-level wind shear identification ability of light detection and ranging (LiDAR) during a wet downburst, a typical wet downburst storm process on 2021-05-18 was analyzed and investigated by using wind LiDAR and meteorological observation records from Xining Caojiapu International Airport, and using the method of combining multiple data with specific events for theoretical analysis and data validation. The results show that the downburst has complex wind field structures. Before the downburst arrived at the airport, the downdraft outflow exceeded 14 m/s, which is coupled with the ambient wind to form a headwind shear convergence line, and the strongest outflow region is located 1 km to 2 km behind the convergence line. When the downburst arrives over the runway, it creates a divergence wind field on the ground. The wind speed in the center of the divergence area is much lower than that at the edge of the outflow, the vertical airflow had drastic changes, and the downburst lasted for about 10 min. The LiDAR has a good identification of the vertical airflow distribution inside the cumulonimbus, the fine structure of the divergence wind field, and the formation and evolution of the convergence line. The interactive use of different detection patterns and data products of LiDAR is very conducive to monitoring and warning of low-level wind shear at the airport. This study provides a reference for the application of LiDAR in the prediction and research of downburst wind shear.
-
表 1 FC-Ⅲ型激光雷达的参数
Table 1. Main parameters of FC-Ⅲ LiDAR
parameters value average power ≤200 W wavelength 1.55 μm scan range(azimuth/pitch) 0°~360°/0°~90° detection range 10 km range resolution 50 m/75 m/100 m scanning mode DBS/PPI/RHI/GP angle resolution ≤0.1° wind speed range -60 m/s~+60 m/s wind velocity accuracy ≤0.5 m/s products radial velocity, vertical speed, spectrum width, etc. -
[1] 左金辉, 贾豫东. 多普勒激光雷达风场反演研究进展[J]. 激光与红外, 2021, 51(1): 3-8. ZUO J H, JIA Y D. Research progress in wind field inversion of Doppler lidar[J]. Laser & Infrared, 2021, 51(1): 3-8(in Chin-ese). [2] 范琪, 朱晓林, 周鼎富, 等. 激光测风雷达分析典型高原机场风场特征[J]. 激光技术, 2020, 44(5): 525-531. doi: 10.7510/jgjs.issn.1001-3806.2020.05.001 FAN Q, ZHU X L, ZHOU D F, et al. Analysis of the wind field characteristics using the wind LiDAR in a typicalplateau airport[J]. Laser Technology, 2020, 44(5): 525-531(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2020.05.001 [3] LIU Z, BARLOW J F, CHAN P W, et al. A review of progress and applications of pulsed Doppler wind LiDARs[J]. Remote Sensing, 2019, 11(21): 2522. doi: 10.3390/rs11212522 [4] INTERNATIONAL CIVIL AVIATION ORGANIZATION. Manual on low-level wind shear[M]. Ottawa, Canada: International Civil Aviation Organization, 2005: 5-27. [5] SHUN C M. Ongoing research in Hong Kong has led to improved wind shear and turbulence alerts[J]. ICAO Journal, 2003, 58(2): 4-6. [6] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0 [7] YEH Y, CUMMINS H Z. Localized fluid flow measurements with an He-Ne laser spectrometer[J]. Applied Physics Letters, 1964, 4(10): 176-178. doi: 10.1063/1.1753925 [8] KARLSSON C J, OLSSON F Å A, LETALICK D, et al. All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements[J]. Applied Optics, 2000, 39(21): 3716-3726. doi: 10.1364/AO.39.003716 [9] OUDE NIJHUIS A C P, THOBOIS L P, BARBARESCO F, et al. Wind hazard and turbulence monitoring at airports with LiDAR, radar, and mode-S downlinks: The UFO project[J]. Bulletin of the American Meteorological Society, 2018, 99(11): 2275-2293. doi: 10.1175/BAMS-D-15-00295.1 [10] LOAEC S, THOBOIS L, CARIOU J P, et al. Monitoring wake vortices with a scanning Doppler LIDAR[C]//Proceedings of the 9th International Symposium on Tropospheric Profiling(ISTP). L'Aquila, Italy: ISTP, 2012: 4. [11] 潘静岩, 邬双阳, 刘果, 等. 相干激光雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724. doi: 10.3969/j.issn.1007-2276.2013.07.013 PAN J Y, WU Sh Y, LIU G, et al. Wind measurement techniques of coherent wind LiDAR[J]. Infrared and Laser Engineering, 2013, 42(7): 1720-1724(in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.013 [12] 冯力天, 郭弘其, 陈涌, 等. 1.55 μm全光纤多普勒测风雷达系统与试验[J]. 红外与激光工程, 2011, 40(5): 844-847. FENG L T, GUO H Q, CHEN Y, et al. Experiment of all fiber Doppler LiDAR at 1.55 μm[J]. Infrared and Laser Engineering, 2011, 40(5): 844-847(in Chinese). [13] 代冰冰, 何敏, 杨靖新, 等. 利用激光雷达判别机场晴空风切变事件成因[J]. 气象科技, 2021, 49(4): 589-596. DAI B B, HE M, YANG J X, et al. Causal analysis of a clear sky wind shear event at a plateau airport in Southwest China using LiDAR data[J]. Meteorological Science and Technology, 2021, 49(4): 589-596(in Chinese). [14] 华志强, 黎倩, 黄轩, 等. 激光测风雷达在航空保障中的典型应用分析[J]. 激光技术, 2020, 44(5): 600-604. doi: 10.7510/jgjs.issn.1001-3806.2020.05.012 HUA Zh Q, LI Q, HUANG X, et al. Analysis of the typical application of laser wind measurement radar in aviation support[J]. Laser Technology, 2020, 44(5): 600-604 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2020.05.012 [15] 梁希豪, 杨寅, 冯亮, 等. 基于激光测风雷达银川机场动量下传大风特征研究[J]. 激光技术, 2023, 47(3): 432-438. doi: 10.7510/jgjs.issn.1001-3806.2023.03.023 LIANG X H, YANG Y, FENG L, et al. Research on the characteristics of momentum downward gale in Yinchuan Airport based on wind LiDAR[J]. Laser Technology, 2023, 47(3): 432-438 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.03.023 [16] CHAN P W, SHUN C M, WU K C. Operational LiDAR-based system for automatic windshear alerting at the Hong Kong International Airport[C]//12th Conference on Aviation, Range, and Aerospace Meteorology, American Meteorological Society. Atlanta, GA, USA: Technical Association of the Pulp and Paper Industry Press, 2006: 6. [17] CHAN P W, SHAO A M. Depiction of complex airflow near Hong Kong International Airport using a Doppler LiDAR with a two-dimensional wind retrieval technique[J]. Meteorologische Zeitschrift, 2007, 16(5): 491-504. doi: 10.1127/0941-2948/2007/0220 [18] CHAN P W, HON K K, SHIN D K. Combined use of headwind ramps and gradients based on LiDAR data in the alerting of low-level windshear/turbulence[J]. Meteorologische Zeitschrift, 2011, 20(6): 661-670. doi: 10.1127/0941-2948/2011/0242 [19] SHUN C M, CHAN P W. Applications of an infrared Doppler LiDAR in detection of wind shear[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 637-655. doi: 10.1175/2007JTECHA1057.1 [20] YOSHINO K. Low-level wind shear induced by horizontal roll vortices at Narita International Airport, Japan[J]. Journal of the Meteo-rological Society of Japan, 2019, 97(2): 403-421. [21] HAN Y, LIU J, SUN D, et al. Fine gust front structure observed by coherent Doppler LiDAR at Lanzhou Airport (103° 49' E, 36° 03' N)[J]. Applied Optics, 2020, 59(9): 2686-2694. doi: 10.1364/AO.384634 [22] ZHANG H, WU S, WANG Q, et al. Airport low-level wind shear LiDAR observation at Beijing Capital International Airport[J]. Infrared Physics & Technology, 2019, 96(2): 113-122. [23] 刘晓英, 吴松华, 张洪玮, 等. 基于相干多普勒测风激光雷达的不同成因类型的低空风切变观测[J]. 红外与毫米波学报, 2020, 39(4): 491-504. LIU X Y, WU S H, ZHANG H W, et al. Low-level wind shear observation based on different physical mechanismsby coherent Doppler LiDAR[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 491-504 (in Chinese). [24] 颜玉倩, 田维东, 李金海, 等. 多源数据在高原机场一次低空风切变过程分析中的综合应用[J]. 高原气象, 2020, 39(6): 1329-1338. YAN Y Q, TIAN W D, LI J H, et al. Comprehensive application of multi-source data in the analysis of a lowlevel wind shear process over plateau airport[J]. Plateau Meteorology, 2020, 39(6): 1329-1338 (in Chinese). [25] 黄轩, 郑佳锋, 张杰, 等. 西宁机场一次低空风切变的结构和特征研究[J]. 激光技术, 2022, 46(2): 206-212. doi: 10.7510/jgjs.issn.1001-3806.2022.02.010 HUANG X, ZHENG J F, ZHANG J, et al. Study on the structure and characteristic of a low-level wind shearprocess that happened over Xining Airport[J]. Laser Technology, 2022, 46(2): 206-212 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.02.010 [26] 张涛, 黎倩, 郑佳锋, 等. 激光测风雷达研究微下击暴流引发的低空风切变[J]. 激光技术, 2020, 44(5): 563-569. doi: 10.7510/jgjs.issn.1001-3806.2020.05.007 ZHANG T, LI Q, ZHENG J F, et al. A study on low-level wind shear caused by microburst using LiDAR and other data[J]. Laser Technology, 2020, 44(5): 563-569(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2020.05.007 [27] 冯力天, 周杰, 范琪, 等. 应用于民航机场风切变探测与预警的三维激光测风雷达[J]. 光子学报, 2019, 48(5): 0512001. FENG L, ZHOU J, FAN Q, et al. Three-dimensional LiDAR for wind shear detection and early warning in civil aviation airport[J]. Acta Photonica Sinica, 2019, 48(5): 0512001 (in Chinese). [28] FUJITA T T. Downbursts: Meteorological features and wind field characteristics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(1/3): 75-86. [29] WAKIMOTO R M. Forecasting dry microburst activity over the high plains[J]. Monthly Weather Review, 1985, 113(7): 1131-1143. doi: 10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2 [30] WILSON J W, ROBERTS R D, KESSINGER C, et al. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection[J]. Journal of Applied Meteorology and Climatology, 1984, 23(6): 898-915. doi: 10.1175/1520-0450(1984)023<0898:MWSAEO>2.0.CO;2 [31] McCARTHY J, SERAFIN R. The microburst hazard to aircraft[J]. Weatherwise, 1984, 37(3): 120-127. doi: 10.1080/00431672.1984.9933539 [32] 郑永光, 田付友, 孟智勇, 等. "东方之星"客轮翻沉事件周边区域风灾现场调查与多尺度特征分析[J]. 气象, 2016, 42(1): 1-13. ZHENG Y G, TIAN F Y, MENG Zh Y, et al. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship "Dongfangzhixing"[J]. Meteorological Monthly, 2016, 42(1): 1-13 (in Chinese). [33] FUJITA T T. The downburst, report of projects NIMROD and JAWS[J]. University of Chicago, 1985, 210(20): 112-122. [34] HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology and Climatology, 1988, 27(8): 900-927. doi: 10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2 [35] WANG X, WANG H, HE J, et al. Automated recognition of macro downburst using Doppler weather radar[J]. Atmosphere, 2022, 13(5): 672-691. [36] HJELMFELT M R, JOHNSON E A, MIYANISHI K. Microbursts and macrobursts: Windstorms and blowdowns[M]. Burlington, USA: Elsevier, Academic Press, 2010: 59-95. [37] STICH D, FORSTER C, TAFFERNER A, et al. Information on thunderstorm initiation, nowcast, and forecast for aviation safety and efficiency[C]//Programme 1st Ecats Conference. Berlin, Germany: Deutsches Zentrum fur Luft-und Raumfahrt, 2013: 11. [38] IWAI H, MURAYAMA Y, ISHII S, et al. Strong updraft at a sea-breeze front and associated vertical transport of near-surface dense aerosol observed by Doppler LiDAR and ceilometer[J]. Boundary-Layer Meteorology, 2011, 141(1): 117-142.