-
图 1a为新疆乌鲁木齐地窝堡国际机场(下面简称乌鲁木齐机场)及周边区域的地形; 图 1b为机场跑道; 图 1c为测风激光雷达外景图。乌鲁木齐机场地处天山山脉以北、准噶尔盆地以南,地势由西南向东北降低,背靠博罗科努山和博格达山,是典型的“呐叭口地形”。在风速较大的情况下,该特殊地形极易产生低空风切变。该机场海拔为648 m,跑道为25#和07#跑道,呈70°~250°走向,全长3600 m。雷达安装于25#跑道入口端。
图 1 a—乌鲁木齐机场及周边地形b—跑道c—FC-Ⅲ型测风激光雷达外景
Figure 1. a—surrounding terrains of Urumqi Airport b—the runway c—the appearance of FC-Ⅲ wind LiDAR
本文中使用的是一部由西南技术物理研究所研制的FC-Ⅲ型3-D测风激光雷达。该雷达采用相干、全光纤和多普勒脉冲体制,平均功率低于200 W,发射波长为1.55 μm,空间分辨率为100 m,最大探测距离约为10 km。雷达主要性能参数如表 1所示。
表 1 FC-Ⅲ型测风激光雷达主要性能参数
Table 1. Main technical parameters of the FC-Ⅲ wind LiDAR
parameters value average power ≤200 W wavelength 1.55 μm scanning mode PPI/RHI/DBS/GP scan range(pitch/azimuth) 0°~180°/0°~360° time resolution ≤2 s range resolution 100 m elevation resolution ≤0.1° wind speed range -60 m/s~60 m/s wind velocity accuracy ≤0.5 m/s detection range 0.02 km~10 km FC-Ⅲ型测风激光雷达工作时,采用4种扫描模式相互协作,按扫描顺序的模式名称分别为:多普勒光速摆动(Doppler beam swinging,DBS)模式、平面位置显示(plan position indicator,PPI)模式、下滑道(glide path,GP)模式和距离高度显示(range height indicator,RHI)模式。4个模式的耗时分别为18 s、180 s、22 s和88 s。图 2为雷达4种扫描模式的示意图。其中PPI模式在水平方向上进行圆周扫描,能有效检测雷达周边10 km范围内大风、地形和强天气系统诱发的低空风切变;RHI模式针对跑道方向进行剖面扫描,主要用以跑道剖面上空的气流结构;DBS模式对顶空进行扫描,能够探测包括锋面和急流等重要天气的时间演变特征; GP模式则是为满足机场实际业务中对低空风切变的监测需求而设计的特殊模式,针对下滑道关键区域进行管道式扫描,用以探测航空领域最为关注的顺风切变、逆风切变和侧风切变,对保障飞行安全具有重要意义。本文中对该雷达2021-10—2022-06 GP模式的径向速度数据展开了研究。
本文中还使用2022-01—06该机场的航空器报告资料。该资料记录了飞机在飞行过程中遭遇风切变的时间、位置和强度等信息,可作为验证雷达遥测低空风切变的有效性参考[12-13]。
-
飞机起降均沿着下滑道这一特定区域进行,此外,航空器报告描述的风切变事件也主要集中在该区域, 因此该区域的低空风切变对航空飞行安全影响尤为关键[2, 14-15]。本文中对该区域低空风切变的雷达识别进行了效果评估和特征研究。
从国内外研究现状和应用效果来看,目前有3种较主流、可行的下滑道区域低空风切变识别方法,即:单斜坡法、双斜坡法和区域散度法。然而,这3种方法在不同机场的适用性和应用效果与机场风场特征和雷达安装位置及具体雷达性能密切联系[13, 16]。为排除雷达探测误差对低空风切变识别的影响,本文中参考CHAN等人[17]的方法对探测数据资料进行质量控制,具体方法如下:对每个距离库的径向风速与相邻空间的平均风速差值进行判断,若差值超过3 m/s,则认为当前距离库的径向速度可靠性较低,视为奇异值,并以相邻距离库的平均值代替; 随后根据雷达安装位置与机场下滑道的位置关系进行逆风廓线提取, 逆风廓线是指跑道及下滑道路径上的径向风速组合而成的数据序列[18], 在乌鲁木齐机场,激光雷达安装于25#跑道入口,该位置与下滑道接地点位置基本一致,因此逆风廓线近似为雷达GP扫描时在25#跑道方向和07#跑道方向的径向速度数据序列; 提取出逆风廓线后,即可采用识别方法对下滑道区域的低空风切变进行识别。3种方法简要介绍如下。
(a) 单斜坡法。单斜坡法将逆风持续增大或减小的一段空间距离视为一个斜坡,若增大或减小的风速超过某一阈值,即判定为风切变。国际民航组织规定该阈值为7.7 m/s[3]。单斜坡法如下式所示:
$ \left\{\begin{array}{l} \left|v_{\mathrm{p}}-v_{\mathrm{p}, 1}\right| \geqslant 7.7 \mathrm{~m} / \mathrm{s} \\ \Delta x \leqslant 4 \mathrm{~km} \end{array}\right. $
(1) 式中: Δx为斜坡长度; vp和vp, 1为斜坡两侧端点的径向风速。
(b) 双斜坡法。该方法类似于单斜坡法,但是基于两个相邻斜坡风速增大或减小的风速差平均值来判断低空风切变,其告警阈值与单斜坡法相同,如下式所示:
$ \left\{\begin{array}{l} \frac{1}{2}\left(\left|v_{\mathrm{PI}}-v_{\mathrm{PI}, 1}\right|+\left|v_{\mathrm{PI}}-v_{\mathrm{PI}, 2}\right|\right) \geqslant 7.7 \mathrm{~m} / \mathrm{s} \\ \Delta x_1+\Delta x_2 \leqslant 4 \mathrm{~km} \end{array}\right. $
(2) 式中: Δx1和Δx2分别为两个相邻斜坡的长度; vPI, 1为第1个斜坡起始点的风速; vPI, 2为第2个斜坡终点的风速; vPI则为两个斜坡交点的风速。
(c) 区域散度法。该方法以逆风廓线上的每一数据点为中心,将其序号记为i;随后设置3个窗区,依次为窗区1、2和3;最终计算出每一数据点的区域散度值Ii,实现对风切变的检测。具体如下式所示:
$ \left\{\begin{array}{l} I_i=\frac{1}{(D+2 R) \Delta L}\left(v_{i+D / 2+R}-v_{i-D / 2-R}\right) \\ v_{i+D / 2+R}=\frac{1}{2 R+1} \sum\limits_{k=i+D / 2}^{i+D / 2+2 R} v_k \\ v_{i-D / 2-R}=\frac{1}{2 R+1} \sum\limits_{k=i-D / 2-2 R}^{i-D / 2} v_k \end{array}\right. $
(3) 式中: vi+D/2+R和vi-D/2-R为窗区1和窗区3的平均风速; ΔL为激光雷达距离库库长; k为窗区内数据点的序号; D为窗区2的宽度; R为窗区1和窗区3的半宽,均以雷达距离库库长的倍数来表示。结合LI等人[11]的研究结果,将D和R分别取为2和1,且当连续3个数据点的Ii绝对值超过0.0025/s,认为该位置存在风切变。若Ii为正值,表明该位置存在逆风切变;反之,则为顺风切变。
本文中以飞机航空器报告作为“真值”评估激光雷达识别低空风切变的效果。考虑到乌鲁木齐机场激光雷达完成一轮完整扫描的周期约为8 min,且水平和垂直低空风切变判别方式的不同会导致空间定位上的差异,故认为当雷达识别结果与航空器报告满足“时间间隔小于8 min、空间间隔小于500 m”时,雷达为成功识别;否则,雷达为漏识别。采用成功率H和漏报率M作为衡量雷达识别效果的两个指标,计算方法如下所示:
$ H=\frac{N_1}{N_{\mathrm{t}}} \times 100 \% $
(4) $ M=\frac{N_{\mathrm{t}}-N_1}{N_{\mathrm{t}}} \times 100 \% $
(5) 式中: Nt为航空器报告的风切变事件总个数; Nl为雷达成功识别的个数。由于激光雷达是连续观测,而航空器报告仅能在有航班的时候且遭遇风切变才有相应记录,因此无法判断雷达判别的风切变是否为误报,故本文中不考虑误报率。
-
2022-01—06期间,乌鲁木齐机场附近共收到31份关于风切变的航空器报告,其中有15次发生在下滑道或跑道等雷达探测区域内。这15次低空风切变的航空器报告信息和雷达3种方法的识别结果如表 2所示。图 3中给出了对应每个风切变事件的逆风廓线(正负速度分别为逆风和顺风)和3种方法识别的结果。图中蓝色、黄色和红色方块分别代表单斜坡法、双斜坡法和区域散度法的风切变识别位置,蓝色圆点代表单斜坡法和区域散度法都识别到的位置,黄色圆点代表双斜坡法和区域散度法都识别到的位置,黄色星号代表 3种方法都识别到的位置,黑色代表没有风切变。需要注意的是,航空器报告提示的风切变信息为定性结果,而激光测风雷达识别结果为定量结果,因此, 一个风切变个例的逆风廓线中会识别出多个风切变位置的情况。
表 2 航空器报告的风切变事件信息和激光雷达的识别结果
Table 2. Low-level wind shear events reported by pilot and the LiDAR identification results
low-level wind shears recorded by pilot reports identification results of different methods pilot report time runway distance to the touch-down point time/km identification time the single-slope method the double-slope method the regional divergence method 2022-01-14T18:41 25# 1.8~2.3 2022-01-14T18:41 failure failure success 2022-01-15T09:44 25# 1.0~2.0 2022-01-15T09:43 failure failure failure 2022-02-06T20:17 25# 0.9~1.0 2022-02-06T20:21 failure failure success 2022-03-08T11:34 25# 0.1 2022-03-08T11:37 failure failure success 2022-03-30T16:08 25# 1.2 2022-03-30T16:06 failure failure success 2022-05-01T11:10 07# 1.0~2.0 2022-05-01T11:11 failure failure success 2022-05-01T12:17 07# 4.8 2022-05-01T12:19 success success success 2022-05-11T18:43 25# 2.0 2022-05-11T18:46 success failure success 2022-05-13T16:29 07# 4.0 2022-05-13T16:29 failure failure success 2022-05-29T17:51 25# 1.0~2.0 2022-05-29T17:55 failure failure success 2022-05-29T22:03 25# 0.3~0.6 2022-05-29T22:03 failure failure success 2022-05-29T22:13 25# 0.3~0.6 2022-05-29T22:12 failure failure failure 2022-05-29T23:27 25# 0.2 2022-05-29T23:29 failure failure success 2022-05-30T13:15 07# 0.0~2.9 2022-05-30T13:12 failure failure success 2022-06-11T16:11 07# 0.6~2.4 2022-06-11T16:16 failure failure success success rate H/% 13.3 6.7 86.7 failure rate M/% 86.7 93.3 13.3 图 3 15个风切变个例的逆风廓线和激光雷达3种方法识别的结果
Figure 3. Headwind profiles of 15 wind shear cases and the identification results of LiDAR by three algorithms
结合表 2和图 3来看,15次低空风切变中,区域散度法共识别出13次,H=86.7%,M=13.3%;单斜坡法共识别出2次,H=13.3%,M=86.7%;双斜坡法共识别出1次,H=6.7%,M=93.3%。结果表明,区域散度法显然具有更高的H和更低的M。进一步对区域散度法两个识别失败个例进行分析。如图 3b所示,对个例(2022-01-15T09:44)的风切变,风向存在由逆风转为顺风的切变,但风速整体较小,Ii低于算法的识别阈值,因此未能成功识别。航空器报告是根据机组人员直接感受结合机载设备的告警值给出的定性结果,与雷达的定量观测结果无法进行完全准确的对比,导致了此次漏识别。如图 3l所示,对于个例(2022-05-29T22:13)的风切变,尽管逆风风速较大,但廓线的波动较小,因此Ii也未能达到算法的识别阈值。此外,调查前一时刻的航空器报告(2022-05-29T22:03)发现,该位置存在垂直风切变, 如图 3所示;但由于区域散度法以及上述单斜坡法和双斜坡法都只能用于识别水平风切变,因此未能识别出航空器报告的垂直风切变。若将个例(2022-05-29T22:13)排除不计,则区域散度法的H和M则分别为92.86%和7.14%。
综上所述,目前3种主流的下滑道风切变识别方法中,区域散度法在乌鲁木齐机场具有较好的效果,对该机场下滑道和跑道的低空风切变识别结果是较为可信的。
激光雷达识别低空风切变的方法和效果
Methodology and effectiveness of LiDAR in identifying low-level wind shear
-
摘要: 为了提升对低空风切变的识别和预警能力, 基于国产FC-Ⅲ型测风激光雷达下滑道模式资料, 结合航空器空中报告, 对下滑道区域低空风切变识别的单斜坡法、双斜坡法和区域散度法进行了效果分析和评估, 并利用雷达识别结果, 统计分析得到了乌鲁木齐机场冬春两季低空风切变的时空分布特征。结果表明, 雷达采用区域散度法对该机场低空风切变的识别效果最好, 识别成功率可达86.7%;由时空分布特征分析可知, 14:00—16:00时是该机场低空风切变发生的高峰, 冬春两季的高发时段分别为14:00—18:00时和12:00—20:00时; 春季风切变的频次35.7%和风切变强度0.0042/s均高于冬季的17.6%和0.004/s; 跑道和两端下滑道空间位置的风切变雷达探测频率存在差异, 说明该雷达能较准确捕获风切变发生的具体位置。该研究为激光测风雷达在低空风切变识别的应用提供了参考。Abstract: To improve the ability of low-level wind shear identification and early warning, the effects of the single-slope method, double-slope method, and regional-divergence method for low-level wind shear identification in glide path area were analyzed and evaluated based on the data of a Chinese FC-Ⅲ wind light detection and ranging(LiDAR) and pilot reports. Subsequently, the spatial and temporal distribution characteristics of wind shear in Urumqi Airport in winter and spring were analyzed by using radar recognition results. The evaluation shows that the regional divergence method has an optimal performance for identifying the low-level wind shear at the airport, with a success rate of 86.7%. 14:00—16:00 is the occurrence time peak of low-level wind shear at the airport, and the high occurrence periods in winter and spring are 14:00—18:00 and 12:00—20:00, respectively. The wind shear frequency of 35.7% and wind shear intensity of 0.0042/s in spring are higher than those of 17.6% and 0.004/s in winter. The differences in radar detection frequency of wind shears at different parts of the runway and glide paths indicate that the radar can accurately capture the specific location of wind shears. The study provides a reference for the application of wind LiDAR in the field of low-level wind shear recognition.
-
表 1 FC-Ⅲ型测风激光雷达主要性能参数
Table 1. Main technical parameters of the FC-Ⅲ wind LiDAR
parameters value average power ≤200 W wavelength 1.55 μm scanning mode PPI/RHI/DBS/GP scan range(pitch/azimuth) 0°~180°/0°~360° time resolution ≤2 s range resolution 100 m elevation resolution ≤0.1° wind speed range -60 m/s~60 m/s wind velocity accuracy ≤0.5 m/s detection range 0.02 km~10 km 表 2 航空器报告的风切变事件信息和激光雷达的识别结果
Table 2. Low-level wind shear events reported by pilot and the LiDAR identification results
low-level wind shears recorded by pilot reports identification results of different methods pilot report time runway distance to the touch-down point time/km identification time the single-slope method the double-slope method the regional divergence method 2022-01-14T18:41 25# 1.8~2.3 2022-01-14T18:41 failure failure success 2022-01-15T09:44 25# 1.0~2.0 2022-01-15T09:43 failure failure failure 2022-02-06T20:17 25# 0.9~1.0 2022-02-06T20:21 failure failure success 2022-03-08T11:34 25# 0.1 2022-03-08T11:37 failure failure success 2022-03-30T16:08 25# 1.2 2022-03-30T16:06 failure failure success 2022-05-01T11:10 07# 1.0~2.0 2022-05-01T11:11 failure failure success 2022-05-01T12:17 07# 4.8 2022-05-01T12:19 success success success 2022-05-11T18:43 25# 2.0 2022-05-11T18:46 success failure success 2022-05-13T16:29 07# 4.0 2022-05-13T16:29 failure failure success 2022-05-29T17:51 25# 1.0~2.0 2022-05-29T17:55 failure failure success 2022-05-29T22:03 25# 0.3~0.6 2022-05-29T22:03 failure failure success 2022-05-29T22:13 25# 0.3~0.6 2022-05-29T22:12 failure failure failure 2022-05-29T23:27 25# 0.2 2022-05-29T23:29 failure failure success 2022-05-30T13:15 07# 0.0~2.9 2022-05-30T13:12 failure failure success 2022-06-11T16:11 07# 0.6~2.4 2022-06-11T16:16 failure failure success success rate H/% 13.3 6.7 86.7 failure rate M/% 86.7 93.3 13.3 -
[1] 赵文凯, 单雨龙, 赵世军. 激光测风雷达监测低空风切变研究进展[J]. 气象水文海洋仪器, 2020, 37(4): 97-100. ZHAO W K, SHAN Y L, ZHAO Sh J. Research progress of low-level wind shear detection by laser radar[J]. Meteorological, Hydrological and Marine Instrument, 2020, 37(4): 97-100 (in Chinese). [2] 俞飞, 姬鸿丽. 低空风切变的分析与预报[J]. 四川气象, 2001(3): 18-19. YU F, JI H L. Analysis and forecast of low-level wind shear[J]. SiChuan Meteorology, 2001(3): 18-19(in Chinese). [3] WU T C, HON K K. Application of spectral decomposition of lidar-based headwind profiles in windshear detection at the Hong Kong international airport[J]. Meteorologische Zeitschrift, 2018, 27(1): 33-42. doi: 10.1127/metz/2017/0858 [4] 鲁峻麟, 黄惺惺, 顾桃峰, 等. 测风雷达在超大城市综合观测中的探测效能评估[J]. 气象研究与应用, 2021, 42(4): 101-105. LU J L, HUANG X X, GU T F, et al. Evaluation of detection efficiency of wind radar in comprehensive observation of mega cities[J]. Journal of Meteorological Research and Application, 2021, 42(4): 101-105(in Chinese). [5] 赵文凯, 赵世军, 单雨龙, 等. 激光测风雷达风场探测性能评估[J]. 中国测试, 2022, 48(1): 147-153. ZHAO W K, ZHAO Sh J, SHAN Y L, et al. Evaluation of wind detection performance based on wind lidar[J]. China Measurement & Test, 2022, 48(1): 147-153(in Chinese). [6] 傅军, 李洁, 吴强. 激光测风雷达在风场观测领域的应用及展望[J]. 空气动力学学报, 2021, 39(4): 172-179. FU J, LI J, WU Q. Application and prospect of Doppler lidar in the wind field observation[J]. Acta Aerodynamica Sinica, 2021, 39(4): 172-179(in Chinese). [7] 李冬梅, 郑永超, 潘静岩, 等. 相干多普勒激光测风雷达系统研究[J]. 光学技术, 2010, 36(6): 880-884. LI D M, ZHENG Y Ch, PAN J Y, et al. Index system of coherence Doppler wind lidar[J]. Optical Technique, 2010, 36(6): 880-884(in Chinese). [8] 陈震. 全光纤相干测风激光雷达研究[D]. 青岛: 中国海洋大学, 2015. CHEN Zh. The research on all fiber coherent wind lidar[D]. Qing-dao: Ocean University of China, 2015(in Chinese). [9] 范琪, 朱克云, 郑佳锋, 等. 不同天气类型下全光纤相干激光测风雷达探测性能分析[J]. 中国激光, 2017, 44(2): 0210003. FAN Q, ZHU K Y, ZHENG J F, et al. Detection performance analysis of all-fiber coherent wind lidar under different weather types[J]. Chinese Journal of Lasers, 2017, 44(2): 0210003(in Chinese). [10] 黄轩, 郑佳锋, 张杰, 等. 西宁机场一次低空风切变的结构和特征研究[J]. 激光技术, 2022, 46(2): 206-212. HUANG X, ZHENG J F, ZHANG J, et al. Study on the structure and characteristic of a low-level wind shear process that happened over Xining Airport[J]. Laser Technology, 2022, 46(2): 206-212(in Chinese). [11] LI L Q, SHAO A M, ZHANG K J, et al. Low-level wind shear characteristics and lidar-based alerting at Lanzhou Zhongchuan International Airport, China[J]. Journal of Meteorological Research, 2020, 34(3): 633-645. doi: 10.1007/s13351-020-9134-6 [12] 范琪, 郑佳锋, 周鼎富, 等. 基于激光测风雷达的机场低空风切变识别算法[J]. 红外与毫米波学报, 2020, 39(4): 462-472. FAN Q, ZHENG J F, ZHOU D F, et al. Research on airport low-level wind shear identification algorithm based on laser wind radar[J]. Journal of Infrared Millimeter Waves, 2020, 39(4): 462-472(in Chinese). [13] 张曦, 张建军, 丁媛媛, 等. 机场多普勒激光雷达风切变探测与识别[J]. 气象科技, 2021, 49(2): 184-191. ZHANG X, ZHANG J J, DING Y Y, et al. Detection and identification of wind shear using airport Doppler lidar[J]. Meteorological Science and Technology, 2021, 49(2): 184-191(in Chinese). [14] NECHAJ P, GAÁL L, BARTOK J, et al. Monitoring of low-level wind shear by ground-based 3D lidar for increased flight safety, protection of human lives and health[J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4584. doi: 10.3390/ijerph16224584 [15] 李肖雅, 禹智斌, 刘冬, 等. 大风背景下首都机场两条跑道低空风切变特征统计[J]. 红外与激光工程, 2021, 50(12): 294-302. LI X Y, YU Zh B, LIU D, et al. Low-level wind shear characteristic statistic of two runways of Beijing capital international airport based on strong wind background[J]. Infrared and Laser Engineering, 2021, 50(12): 294-302(in Chinese). [16] 张开俊, 伏龙延, 李兰倩, 等. 基于激光测风雷达的两种低空风切变告警算法对比研究[J]. 干旱气象, 2021, 39(4): 652-661. ZHANG K J, FU L Y, LI L Q, et al. Comparison of two lidar based alerting algorithms for low-level wind shear[J]. Journal of Arid Meteorology, 2021, 39(4): 652-661(in Chinese). [17] CHAN P W, LEE Y F. Application of short-range lidar in wind shear alerting[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(2): 207-220. doi: 10.1175/JTECH-D-11-00086.1 [18] 张洪玮, 吴松华, 尹嘉萍, 等. 基于短距相干测风激光雷达的机场低空风切变观测[J]. 红外与毫米波学报, 2018, 37(4): 468-476. ZHANG H W, WU S H, YIN J P, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 468-476(in Chinese).