高级检索

激光法制备超细纳米金刚石的相变机理

Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser

  • 摘要: 为了研究激光法制备纳米金刚石的相变机理,采用纳秒脉冲激光冲击微米级石墨悬浮液,并做强酸高温氧化提纯处理,结合X射线衍射、喇曼光谱、高分辨率透射电镜等表征手段以及热力学和动力学分析方法,对实验结果进行了理论分析和实验验证。合成得到分散均匀、尺寸在4nm~12nm的超细纳米金刚石。结果表明,纳秒激光辐照下,石墨是通过固态-气态-液态-固态的形式转变为金刚石结构的;与毫秒脉冲激光相比,高功率密度、短脉宽的纳秒激光为金刚石核的生长提供了大的过冷度,提高了金刚石的形核率和生长速率;但是纳米金刚石的生长温度范围极小,冷却过程中石墨结构与金刚石结构同时形核、长大,引起金刚石颗粒表面的石墨化,限制了纳米金刚石的生长。

     

    Abstract: In order to study the growth mechanism from graphite to nano-diamond by laser processing, micron graphite suspension was irradiated by nanosecond pulse laser and then was purified by acid high-temperature oxidation. X-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used in theoretical analysis and experimental verification. The formation mechanism of nano-diamond was analyzed from thermodynamics and kinetics aspects respectively. Ultra-fine nano-diamond with particle size of 4nm~12nm and uniformly dispersion was synthesized. The results show that under the irradiation of nanosecond pulse laser, the transition from graphite to diamond is solid-vapor-liquid-solid phase transformation process. Compared with millisecond pulse laser, nanosecond laser with high intensity and short pulse width can supply larger super-cooling degree for diamond core growth and improve nucleation rate and growth velocity of nano-diamond. However, growth temperature range of nano-diamond is extremely small. Inevitable graphitization on the surface of diamond particles limits the further growth of nano-diamond.

     

/

返回文章
返回